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1 Introduction

1. Introduction

These lecture notes are based on Dr. Shirin Bidokhti’s ESE 3030: Stochastic Systems

Analysis and Simulation during the Fall 2021 semester at the University of Pennsylvania.

My personal notes from Dr. Bidokhti’s lecture, slides from Dr. Alejandro Ribeiro’s previous

version of the course, Sheldon Ross’s Introduction to Probability Models, and lecture notes

from MIT’s Introduction to Probability course by John Tsitsiklis and Dimitri P. Bertsekas

were used in order to prepare these notes.

These notes may contain errors and do not substitute lecture attendance or consulting the

references. This is especially true since these notes were prepared with the goal of helping

students taking the course and thus may lack rigor at times. Note also that not all example

problems have solutions as they will be often solved during recitation. Corrections are greatly

appreciated — if a mistake/typo is found, please get in touch via e-mail.
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2 Probability Theory

2. Probability Theory

This course aims ”to learn how to model, analyze and simulate stochastic systems.” This

inherently requires a solid understanding of probability theory — as such, this first module

of the course focuses on reviewing the core components of this subject. Note that we assume

familiarity with the subject and this serves as a review and opportunity to introduce some

additional topics which are relevant to this course. For a more thorough discussion, see

Chapters 1 through Chapter 3 of Introduction to Probability Models by Sheldon Ross or

MIT’s Introduction to Probability lecture notes by John Tsitsiklis and Dimitri P. Bertsekas,

available here at no cost.

2.1. Definitions & Axioms of Probability

In order to illustrate these definitions, we make use of the archetypal probabilistic event: the

roll of a single six-face die. We start by defining sample space Ω, the set that describes

the possible results of a probabilistic event. In the context of our example, this corresponds

to each possible outcome of the die roll (i.e. the die facing each of the six sides after being

rolled). An event E is a subset of the sample space (E ⊆ Ω) and represents specific results

of a probabilistic experiment (E may be equal, for example, to a die showing the number

four after being rolled).

While the definition of probability is an intrinsically complex topic, we skip the philosophical

discussion and instead adopt the following definition: a probability law P(·) is mapping

from the space of events to the real numbers such that it represents the likelihood (or belief)

of the occurrence of each event (e.g. the likelihood of a fair six-face die toss resulting in

3 is 1/6). In order for P(·) to be a probability law, it must satisfy the following three

axioms.

I. Non-Negativity: P(E) ≥ 0, ∀E (i.e the probability law must only map to non-

negative values)

II. Normalization: P(Ω) = 1 (i.e. the probability of all events sums up to 1)
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2 Probability Theory

III. Additivity: P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅ (for two disjoint events, the

probability of their union is equal to the sum of their probabilities)

Immediate results from these axioms include that P(∅) = 0 and P(∪iEi) =
∑

i P(Ei) if

∩iEi = ∅, the probability of the empty event is zero and additivity generalizes for n events,

respectively.

2.2. Bayes’s Theorem

Using our definition of probability, we can also consider conditional probability. It allows

us to consider the probability of a given event A given the occurrence of another event B.

Mathematically, we have the following (where the last line is obtained using Bayes’s Theorem

with P(B|A)).

P(A|B) =
P(A,B)

P(B)

=
P(B|A)P(A)

P(B)

2.3. Independence

We define independence A⊥B for two events A,B. Intuitively, it follows that two events

are independent if the occurrence of B does not affect the likelihood of the outcome of A

(and vice-versa). Mathematically, events A and B are independent if and only if P(A,B) =

P(A)P(B). When applying this to Bayes’s Theorem, we have the following.

P(A|B) =
P(A,B)

P(B)

=
P(A)P(B)

P(B)
(independence)

= P(A)

Intuition is thus correct here: if two events are independent, it follows that the occurrence

of B does not affect the probability of A.

Note that for n > 2 events, pair-wise independence is insufficient for independence. Consider

the set of events E = {E1, E2, E3}; even if E1⊥E2, E1⊥E3, E2⊥E3, it might be the case
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2 Probability Theory

that these events are not independent. For such, we require independence of all subsets (i.e.

independence for all elements of 2E).

2.4. Law of Total Probability

The law of total probability allows us to deconstruct events (which are often complex)

into smaller, tractable components. It is given as the following (where E1, E2, ..., En are

non-overlapping events that form a partition of the sample space).

P(E) =
n∑
i

P(E|Ei)P(Ei)

Intuitively, we divide the sample space into a number of sections each with a probability

associated with it; the probability of a given event, then, is the probability of the said event

when in the section weighted by the probability of each section.

Example 1 Consider an airplane flying that enters a zone with probability P(P ) = 0.05.

This area is monitored by a radar with false positive and false negative probabilities P(FP ) =

P(+|P ) = 0.1 and P(FN) = P(−|P ) = 0.01, respectively. Given that the radar has a

positive alert, what is the probability that the airplane did enter the zone?

P(P |+) =
P(+|P )P(P )

P(+)

=
P(+|P )P(P )

P(+|P )P(P ) +P(+|P )P(P )

=
P(+|P )P(P )

P(+|P )P(P ) +P(+|P )P(P )

=
0.99× 0.05

0.99× 0.05 + 0.1× 0.95

= 0.342

Example 2 A bin contains 3 types of flashlights. The probability that a type 1 flashlight will

give more than 100 hours of light is 0.7, with the corresponding probabilities for type 2 and

type 3 flashlights being 0.4 and 0.3, respectively. Suppose that 20% of the flashlights in the

bin are type 1, 30% are type 2 and 50% are type 3. What is the probability that a randomly

chosen flashlight will give more than 100 hours of use, and given that a flashlight lasted more

than 100 hours, what is the probability that it was a type j flashlight for j = 1, 2, 3?
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2 Probability Theory

2.5. Random Variables

A random variable X is a mapping from the events to the real numbers, X : Ω → R.

More simply, we assign a real number to each event in the sample space such that X(ω) ∈ R

for each event w ∈ Ω. Returning to our original example, we may define X as the number

on the die after being rolled (thus X ∈ {1, 2, 3, 4, 5, 6}) or the square of that number (thus

X ∈ {1, 4, 9, 16, 25, 36}). For two rolls, it may take the value of the larger of the two rolls.

Observe that while the difference is often hazy, note random variables map from abstract

events (such as the die result) to actual numbers.

A commonly used type of random variable is an indicator random variable, 1(E). It

takes the value 1 if a given event E occurs and 0 otherwise. Considering again the die

experiment, we may be interested in whether the roll results in a 3 or not. We can thus

define the event E as whether the roll results in the number 3; it follows then that 1(E) is

a random variable equal to 1 if the roll results in 3 and 0 otherwise.

2.6. Probability mass function, probability density function, and

cumulative distribution function

Since random variables are associated with probabilistic events, we can obtain a probability

associated with them.

PX(x) = P(X = x) = P(∪ω∈Ω,X(ω)=x ω) (1)

When considering discrete random variables (i.e. countable set of possible values), we may

define a probability mass function (p.m.f., pX(x)) as given by Equation 1. Observe that the

p.m.f. respects pX(x) ≥ 0,∀x and
∑

x pX(x) = 1. Likewise, for continuous random variables

(i.e. uncountable set of possible values such as the real set) we may define the probability

density function (p.d.f., fY (y)). It allows for the calculation of the probability of a random

variable taking values in a given interval [a, b]. Similar to the p.m.f, the p.d.f. respects

fY (y) ≥ 0,∀y and
∑

y fY (y) = 1. Note however that the probability that a continuous

random variable takes any specific value (i.e. PY (X = a)) is always zero — the p.d.f. itself
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2 Probability Theory

is not the probability at a given value. Mathematically, we have the following.

PY (y ∈ [a, b]) =

∫ b

a

fY (y)dy

Likewise, we define the cumulative distribution function (c.d.f.), the probability that the

random variable takes a value less than x. This is valid for both discrete and continuous

random variables with the difference being whether the computation uses an integral or

summation.

FX(x) = P(X ≤ x) =
∑
i≤x

pX(i) (discrete random variable)

FY (y) = P(Y ≤ y) =

∫ y

−∞
fY (z)dz (continuous random variable)

Note that the c.d.f. is monotonically non-decreasing and approaches 1. In Figure 1, we

exhibit the p.m.f. and c.d.f. for an arbitrary distribution.

Figure 1: Plot of p.m.f. and c.d.f. for Arbitrary Discrete Distribution

If a given random variable X follows a specific distribution π with parameters a, b, we use

the notation X ∼ π(a, b). Finally, from the Fundamental Theorem of Calculus, we have that

∂FX(x)/∂x = fX(x).

2.7. Distributions for derived random variables

It is often of interest to find the distribution of a random variable which is a transformation

of another, known random variable, for example, Y = 2X for a known X. The standard

procedure to do this is using the c.d.f. of X to find the c.d.f associated with Y ; once the

c.d.f. is obtained, the p.d.f. can usually be trivially found using the Fundamental Theorem

of Calculus.
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2 Probability Theory

Example 3 Consider a random variable X distributed uniformly between 0 and 1; therefore,

its p.d.f. is equal to fX(x) = 1 and its c.d.f. is equal to FX(x) = x. Find the p.d.f. and

c.d.f. of the random variables Y = X2 and Z = 2X.

2.8. Joint Distributions

While we have focused our attention on individual random variables, it is often of interest

to consider the joint distribution of two or more random variables.

Consider a random variable X corresponding to the face shown after rolling a die; likewise,

define Y as the face shown on the opposite side in the same roll. Note that in a regular

6-side die, opposites sides of a die always add up to seven (e.g. 6 and 1, 3 and 4).

We can then consider the joint probability of X, Y defined as p(x, y). It should be clear,

for example, that p(3, 2) should be equal to zero since the probability of observing an event

where one face shows 3 and the other 2 is zero. Likewise, p(3, 4) = 1/6, since this event

corresponds simply to the probability of observing X = 3.

For two independent random variables X and Y , we have that f(x, y) = f(x)f(y). This

equality can be read as the probability of observing two events X = x, Y = y is simply the

product of the probability of each of the two events individually. Consider for example two

dice being tossed with X, Y being the number that results from the first and second die,

respectively. Here, one toss does not affect the other (X⊥Y ), and thus p(3, 2) = p(3, 4) =

1/36.

2.9. Relevant Probability Distributions

There are several distributions that will be used throughout the course. A few of the should

be familiar from previous coursework and they are reviewed below. While expectation and

variance are discussed in Section 2.10, the values for these moments are also given be-

low.
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2 Probability Theory

2.9.1. Bernoulli distribution

A single-parameter distribution, the Bernoulli distribution models a single binary experiment

(i.e. either ”yes” or ”no”, 1 or 0). The one parameter in the distribution is p and it

corresponds to the probability of success (i.e. X = 1). Its p.m.f. is given below (for

x ∈ [0, 1]) while the c.d.f. can only be written as a piece-wise function.

pX(x) = px(1− p)1−x

Figure 2: Plot of p.m.f. and c.d.f. for Bernoulli Distribution with p = 0.3

Its expectation is E[X] = 1p+ 0(1− p) = p and its variance is Var[X] = p(1− p).

2.9.2. Geometric distribution

A single-parameter distribution, it models a sequence of binary experiments until the first

success. It is thus parametrized by one success probability parameter p like the Bernoulli

distribution. For example, the random variable that represents the number of tosses required

until the first head follows a geometric distribution. Note that in the literature this distri-

bution is often described as the shifted geometric distribution since it includes the ”success”

experiment in its count and thus has support in the positive integers while the geometric

distribution does not (and thus has support in the non-negative integers). Its p.m.f. and

c.d.f. are given below (for x ∈ {1, 2, ...}).

pX(x) = p(1− p)x−1 (p.m.f.)

FX(x) = 1− (1− p)⌊x⌋ (c.d.f.)
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2 Probability Theory

Figure 3: Plot of p.m.f. and c.d.f. for Geometric Distribution with p = 0.3

In order to calculate the expected value of a random variable that follows a geometric dis-

tribution, we first note the following.

n∑
i=1

(1− p)x =
1− p

p
( 1
1−(1−p)

− 1)

∂

∂p

n∑
i=1

(1− p)x =
∂

∂p

1− p

p

n∑
i=1

−x(1− p)x−1 = − 1

p2

n∑
i=1

x(1− p)x−1 =
1

p2
(2)

Observe then that the equation for the expected value is E[X] =
∑

x x(1 − p)x−1p =

p
∑

x x(1 − p)x−1; the last term is equal to the left-hand side of Equation 2 and thus

E[X] = p(1/p2) = 1/p. The corresponding variance is Var[X] = (1− p)/p2.

2.9.3. Binomial distribution

Similar to the geometric distribution, the binomial distribution also focuses on modeling a

sequence of binary experiments. With the binomial distribution, however, we have a fixed

number of experiments and the total number of successes is accumulated. It is therefore

a two-parameter distribution with n as the number of experiments and p as the success

probability of each individual experiment. As an example, one can consider the case of

tossing a coin five times each with a probability 0.3 of being heads. If X is a random

variable counting the total number of heads, we have that X follows a binomial distribution
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2 Probability Theory

with parameters n = 5, p = 0.3. Its p.m.f. is given below (for x ∈ {0, 1, 2, ...}) and there is

no simple closed-form solution for the c.d.f. of this distribution.

pX(x) =

(
n

x

)
px(1− p)n−x

Figure 4: Plot of p.m.f. and c.d.f. for Binomial Distribution with n = 12, p = 0.3

For a binomial random variable, its expected value can be obtained using linearity of ex-

pectation and variance properties; we obtain thus E[X] = np and its variance is Var[X] =

np(1− p).

2.9.4. Poisson distribution

The Poisson distribution is similar to the binomial distribution but models specifically rare

events (i.e. p ≪ 1, n ≫ 1). Note that even though the individual events are rare, the fact

that n is large leads to a reasonable number of occurrences. The only parameter of the

Poisson distribution is its rate parameter λ; we will later see that it is the mean event rate

per time period. Its p.m.f. is given below while its c.d.f. depends on the Gamma function

and is thus omitted.

pX(x) =
λxe−λ

x!
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2 Probability Theory

We show that the Poisson distribution can be derived from the Binomial distribution by

setting p = λ/n and letting n approach infinity.

pX(x) = lim
n→∞

(
n

x

)
px(1− p)n−x

= lim
n→∞

(
n

x

)(
λ

n

)x(
1− λ

n

)n−x

= lim
n→∞

n!

(n− x)!x!

(
λ

n

)x(
1− λ

n

)n(
1− λ

n

)−x

=
λx

x!
lim
n→∞

n!

(n− x)!

(
1

n

)x(
1− λ

n

)n(
1− λ

n

)−x

=
λx

x!
lim
n→∞

O(nx)O(1/nx)

(
1− λ

n

)n(
1− λ

n

)−x

=
λx

x!
lim
n→∞

(
1− λ

n

)n

lim
n→∞

O(nx)O(1/nx) lim
n→∞

(
1− λ

n

)−x

=
λxe−λ

x!
(1)(1)

=
λxe−λ

x!

Figure 5: Plot of p.m.f. and c.d.f. for Poisson Distribution with λ = 1
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2 Probability Theory

The expected value of the Poisson can be obtained algebraically as follows.

E[X] =
n∑

x=0

x
λxe−λ

x!

=
n∑

x=1

x
λxe−λ

x!
(first term is zero)

= e−λ

n∑
x=1

x
λx

x!

= e−λ

n∑
x=1

λx

(x− 1)!

= e−λ

n∑
x=1

λx

(x− 1)!

= e−λλ
n∑

z=0

λz

z!

= e−λλeλ (Taylor Series expansion)

= λ

We thus have E[X] = λ and likewise Var[X] = λ.

Example 4 Let X ∼ Poisson(λ1) and Y ∼ Poisson(λ2). Find the distribution associated

with the random variable Z = X + Y . Considering that Poisson random variables may

represent event occurrences, what is the interpretation of the distribution of Z?

2.9.5. Gaussian distribution

The Gaussian (or Normal) distribution is one of the most important distributions in prob-

ability theory and statistics. It is particularly relevant when considering the phenomena

associated with the Central Limit Theorem (see Section 2.11). It is a continuous distri-

bution parameterized by its mean µ and variance σ2. Its p.d.f. is given below (for all

x ∈ R).

fX(x) =
1√
2πσ

e
1
2(

x−µ
σ )

2

While there is no closed-form solution for the c.d.f. of the Gaussian distribution, due to its

frequent use it is often denominated by Φ(x). The standard Gaussian is a specific case of

the Gaussian where µ = 0, σ2 = 1.
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2 Probability Theory

Figure 6: Plot of p.d.f. and c.d.f. for Gaussian Distribution with µ = 0, σ2 = 1

As previously mentioned, E[X] = µ and likewise Var[X] = σ2.

Example 5 The time to pass through a queue to begin self-service at a cafeteria is modeled

by a random variable X ∼ N (15, 9). Determine the probability that an arriving customer

waits between 14 and 17 minutes for service analytically and through simulations.

2.9.6. Exponential distribution

The exponential distribution is a continuous distribution parameterized by a rate parameter

λ and with support in the real non-negative numbers. Its p.d.f. and c.d.f. are given below

(for all x ≥ 0).

fX(x) = λe−λx (p.d.f.)

FX(x) = 1− e−λx (c.d.f.)

An important property of the exponential distribution is that it is the only continuous and

memoryless distribution. This means that the current state of the system is not affected

by its past (i.e. Markov property, which will be further discussed later). For example, if

the random variable X ∼ exp(λ) represents waiting time until an event, its value does not

depend on how much time has elapsed so far; mathematically, we have P(X > s + t|X >

t) = P(X > s).
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2 Probability Theory

Figure 7: Plot of p.d.f. and c.d.f. for Exponential Distribution with λ = 1

For a random variable following an exponential distribution, its expectation E[X] = 1/λ can

be obtained by integration by parts and Var[X] = 1/λ2.

Example 6 Show that the Markov (memoryless) property holds for the exponential dis-

tribution. BONUS: Sketch proof that the exponential distribution is the only continuous

distribution with this property.

This can be proved directly using Bayes’s rule.

P(X > a+ b|X > a) =
P(X > a|X > a+ b)P(X > a+ b)

P(X > a)

=
1× λe−(a+b)λ

λe−aλ

=
e−(a+b)λ

e−aλ

= e−bλ

= P(X > b)

2.10. Expected Value & Variance

For a random variable X, we can define it’s kth moment around a its mean by the following

formula:

µk =


∫ ∞

−∞
(x− E[X])kfX(X = x)dx (continuous r.v.)

∞∑
x

(x− E[X])kpX(X = x) (discrete r.v.)
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In the equation above, the expected value of X, E[X], is the 1st moment around zero (not

around E[X]); that is:

E[X] =


∫ ∞

−∞
xfX(X = x)dx (continuous r.v.)

∞∑
x

xpX(X = x) (discrete r.v.)

The expected value of a random variable gives a notion of the mean (a weighted average) to

the distribution associated with the random variable. Important properties include Linear-

ity of Expectation (expectation is a linear operator, E[X + aY + b] = E[X] + aE[Y ] + b

for any two random variables X, Y and constants a, b), expectation of functions of random

variables (E[g(Y )] =
∫
g(y)fY (y)dy, E[g(X)] =

∑
g(x)pX(x)dx for continuous and discrete

random variables, respectively), Conditional Expectation, and Law of Iterated Expectation,

the last two discussed below.

Example 7 Prove that Linearity of Expectation holds.

We present the concept of conditional expectation through an example. Let X be a

random variable that corresponds to the height of an individual and Y their age. It can be

shown that the best estimate (i.e. what should you guess) for X given no other information

is E[X]. This should make sense: if you have no information about an individual, your best

guess of their height should be the average height in the population. If we know one’s age,

however, our estimate would likely change; for example, if Y = 2 (i.e. the age is two years

old), we should guess a value for X lower than if Y = 20. Clearly, the value of the mean

of a random variable may be affected by information from others. This is mathematically

encoded through a conditional expectation E[X|Y = y], the mean of X given that Y = y,

and it can be calculated as follows. Note that it is inherently a function of y.

E[X|Y = y] =


∫ ∞

−∞
xfX|Y (X = x|Y = y)dx (continuous r.v.)

∞∑
x

xpX|Y (X = x|Y = y) (discrete r.v.)

The notation E[X|Y ], however, is less clear. While E[X|Y = y] is a value, E[X|Y ] is another

random variable. If it is a random variable, however, this implies we can calculate its expected
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value. In fact, the Law of Iterated Expectation tells us that E[E[X|Y ]] = E[X]; the proof

for the continuous case is given below.

E[E[X|Y ]] =

∫
y

E[X|Y = y]fY (Y = y)dy

=

∫
y

(∫
x

xfX|Y (X = x|Y = y)dx

)
fY (Y = y)dy

=

∫
x

x

(∫
y

fX|Y (X = x|Y = y)fY (Y = y)dy

)
dx

=

∫
x

x

(∫
y

fX,Y (X =, Y = y)dy

)
dx (fx|y(x, y)fY (y) = fx,y(x, y))

=

∫
x

xfX(X = x)dx

= E[X]

Intuition should help here. When we know Y = y, we change our estimate of E[X]; if we

do not, however, we are back at the original problem of estimating one’s height with no

information of their age other than it comes from the distribution of Y . It should be the

case, therefore, that our estimate will not change and therefore E[E[X|Y ]] = E[X].

Example 8 The number of goals scored by a soccer player is modeled by the random variable

X goals per game and she expects to play Y games per season. Note that both X and Y are

random variables since the number of goals scored varies as well as the number of games she

will play (injuries, substitutions, etc.) are both stochastic. Let Z be the total number of goals

scored in the season — what is E[Z]?

E[Z] = E

[
Y∑

X

∣∣∣∣∣Y
]

= E[Y ]E[X]

Variance corresponds to the 2nd moment and provides a measure of the spread of the distri-

bution around the mean. It is therefore given by the following.

Var[X] =


∫ ∞

−∞
(x− E[X])2fX(X = x)dx (continuous r.v.)

∞∑
x

(x− E[X])2pX(X = x) (discrete r.v.)
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A simpler formulation for variance can be found through algebraic manipulation and is valid

for both the continuous and discrete case; it is given below.

Var(X) =

∫ ∞

−∞
(x− E[X])2fX(X = x)dx

= E[(X − E[X])2]

= E[X2 − 2XE[X] + E[X]2]

= E[X2]− 2E[X]E[X] + E[X]2

= E[X2]− E[X]2

Note that variance is not a linear operator, but Var[X+Y ] = Var[X]+Var[Y ] if the random

variables X, Y are uncorrelated (otherwise, Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X, Y ]).

Additionally, Var[aX] = a2Var[X] for a random variable X and constant a.

The third and fourth moments are called skewness and kurtosis — while extremely relevant

in some contexts, they will not be used in this course.

2.11. Notions of Convergence

Here, we focus on studying the behavior of sequences of random variables X1, X2, ..., Xn, also

known as stochastic processes. Often, we will consider how different realizations x1, x2, ..., xn

behave and establish different convergence types accordingly. This is further laid out in the

following sections. As a preliminary, we define convergence: a sequence x1, x2, ... converges

to x if for any ϵ > 0 there exists an n0 such that for all n > n0 the inequality |xn − x|< ϵ

holds. That is, for an arbitrarily small ϵ, we must be able to find a point n0 in the sequence

such that all points in the sequence after it (i.e. xn0+1, xn0+2, ... is no more than ϵ away from

x.

2.11.1. Sure Convergence

For a given sequence of random variables X1, X2, ..., Xn, we say that exhibits Sure Con-

vergence if for all of its realizations we have that limn→∞ xn = x where x is a realization of

the random variable X. Note that this is a very rigid requirement since all of its realizations

must respect its conditions.
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2.11.2. Almost Sure Convergence

A relaxation of the Sure Convergence is Almost Sure Convergence (a.s.). We say a

sequence of random variables X1, X2, ..., Xn converges almost surely if P(limn→∞Xn = X) =

1. Note that the limit here is a random variable. Bertsekas and Tsitsiklis write that the

”right way of interpreting this type of convergence is in terms of a sample space consisting

of infinite sequences: all of the probability is concentrated on those sequences that converge

to c. This does not mean that other sequences are impossible, only that they are extremely

unlikely, in the sense that their total probability is zero.” This should not be completely

unfamiliar: in a continuous distribution, the probability of any given value x is zero while

the actual probability of events/intervals is non-zero.

The Strong Law of Large Numbers can be seen as a statement regarding almost sure con-

vergence. It states that the sample average X̄k converges a.s. to the real mean µ = E[X].

values = []

averages = []

n = 3000

for i in range(n):

x = np.random.normal(loc = 3, scale = 4)

values.append(x)

averages.append(np.mean(values))

plt.plot(averages, label=r'$\bar{X}_k$')

plt.plot(3*np.ones(n), label='$\mu$')

plt.xlabel('k')

plt.legend()

plt.grid()

plt.show()

plt.plot(np.abs(averages - real_mean), label=r'$|\bar{X}_k - \mu|$')

plt.xlabel('k')

plt.legend()

plt.grid()

plt.show()
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Figure 8: Different sequences X̄0,k, X̄1,k, X̄2,k, X̄3,k, X̄0,k all approach the

real mean µ = 3 as k →∞

2.11.3. Convergence in Probability

Relaxation of Almost Sure Convergence leads to Convergence in Probability. Conver-

gence in Probability states that limn→∞ P(|Xn −X|> ϵ) = 0. This does not imply that the

realizations of the sequence converge, but that the probability does. Consider Xn = X0+Zn

where X ∼ N (0, 1) and Zn ∼ Bernoulli(1/n). It can be shown that as n → ∞ we have

P(Zn = 1) = 0, thus giving Xn = X0 and showing convergence. However, it may still

occur that Zn = 1 (after all, 1/n is not zero), and thus the sequence only converges in

probability.

The Weak Law of Large Numbers can be seen as a statement regarding almost Convergence

in Probability. It states that the sample average X̄ converges in probability to the real mean

µ = E[X], that is, limn→∞P(|X̄ − µ|> ϵ) = 0

values = []

X_0 = np.random.uniform()

X = []

for n in range(1, 10000):

X.append(X_0 + np.random.binomial(1, 1/n))

plt.plot(X, label=r'$X_n$')

plt.xlabel('$n$')
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plt.legend()

plt.grid()

plt.show()

Figure 9: Sequence Xn = X0 + Zn with X0 = 0.918

2.11.4. Convergence in Distribution

A relaxation of Convergence in Probability and the weakest of the convergence types, Con-

vergence in Distribution states that in a stochastic process X1, X2, ..., Xn the c.d.f. of Xn

converges to that of another random variable X; that is, limx→∞ FXn(x) = FX(x). Consider

Xn = Yi+Zi/n where Yi ∼ N (0, 1) and Zi ∼ Bernoulli(0.5), it should be clear that the c.d.f.

of Xn approaches that of a standard Gaussian as n → ∞ since the the Bernoulli random

variable vanishes.

values = []

N = 10000

for n in range(1, N+1):

Y_i = np.random.normal(loc = 0, scale = 1)

Z_i = 1 if random.random() > 0.5 else 0

values.append(Y_i + Z_i / n)

x = np.linspace(norm.ppf(0.001),

norm.ppf(0.999), 500)

plt.hist(values,bins=50, density=True, label='Empirical p.d.f.')

plt.plot(x, norm.pdf(x, scale=1), label='$F_Y(y)$')

plt.legend()

plt.show()
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Figure 10: The p.d.f. of the sequence approaches that of Yi
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3. Discrete-Time Markov Chains

This module provides an introduction to Markov Chains and introduces much of the modeling

which will be used throughout this course. As you will see, this content makes extensive

use of the probability content in the previous module. The topics discussed here correspond

primarily to Chapter 4 of Introduction to Probability Models by Sheldon Ross.

3.1. Introduction

A discrete stochastic process is formally defined by a sequence of random variables {X1, ..., Xn}

which is characterized by a joint p.m.f. p(x1, . . . , xn) for n ≥ 1. An important class of

stochastic processes that finds applications in various systems is the class of Markov chain

processes which are those that — as implied by its name — respect the Markovian prop-

erty. This property greatly simplifies these joint distributions and implies that for all states

X1, ..., Xn and outcomes i, j, the following statement is true.

P(Xn+1 = j|Xn = i,Xn−1 = xn−1, ..., X1 = x1, x0) = P(Xn+1 = j|Xn = i).

Simply, this property states that given the present state Xn = i, the prediction of the next

state Xn+1 is independent of the past/history of the process X0, X1, . . . , Xn−1. Once we

assume the Markov property, the entire description of the process is possible by knowing its

“state space” — the set of values thatXi may take — and the “transition probabilities” which

define the probability of transitioning from one state i to another state j in one time step.

Throughout this module, we assume that the state space is finite, and thus Xi takes on values

from a finite set. Note also that in this course we will assume that the Markov chains are

time-invariant and thus the transition probabilities do not change with time. In other words,

the probability of transitioning from state Xn = i to Xn+1 = j is constant and independent

of n. We use the notation Pij to refer to the transition probabilities between i and j of the

Markov chain. Note that Pij are probabilities, and thus satisfy the two properties discussed

previously, Pij ≥ 0,
∑

j Pij = 1, non-negativity and normalization, respectively.

Leveraging the fact that the state space and the transition probabilities make up a complete

description of a Markov chain, we develop two critical ways to represent Markov chains:
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the graph representation and the matrix representation, both described in the following

sections.

3.2. Graph Representation of a Markov Process

Formally, we define a directed weighted graph G as the tuple G = (V, E , w) where V =

{v1, v2, ..., vn} is a finite set of n nodes (or vertices), E as the set of ordered tuples (vi, vj)

which indicate a connection from node vi to vj, and w as a function E → R which assign a

value (or weight) to each edge.

As mentioned before, a time-invariant Markov chain may be defined fully by its state space

and transition probabilities. Using a graph representation, each state i from the state space

corresponds to a vertex vi ∈ V while the transition probabilities Pij between states i, j is

represented by an edge e = (vi, vj) with corresponding weight w(e) = Pij.

Consider a simple Markov chain with state space with cardinality 2. The two states 1, 2

are such that with probability 0.6 we stay at the same state in the next time step and

with probability 0.4 transition to the other state. In graph representation, we have the

following.

V = {1, 2}

E = {(1, 1), (1, 2), (2, 1), (2, 2)}

w(i, j) =

0.6 if i = j

0.4 otherwise

We can represent this through set notation (as given above) or visually as follows.

1 20.6 0.6

0.4

0.4
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3.3. Matrix Representation of a Markov Process and the Transi-

tion Matrix

Under the assumption that the system is time-invariant, a Markov chain may also be fully

represented by one transition matrix P. Here, each element Pij (where i, j are the row and

column index, respectively) corresponds to the probability of transitioning from state i to

state j. Considering the example given in the previous section, we have the following.

P =

0.6 0.4

0.4 0.6


Here, each row i corresponds to the probability of transitioning from state i to each other

state j. As such, the sum of the elements of each row should add up to 1, a fact that is

readily confirmed in the example above.

Example 9 Consider a computer server that processes jobs one at a time. Each job takes

some random amount of time to be completed, following a geometric distribution with proba-

bility q. This implies that a job’s processing is completed at each time step with probability q.

Likewise, at each time step, a new job arrives at each time step with probability p. While the

server is busy completing a job, other jobs that have arrived wait in a queue with maximum

capacity of 3 packets. If more packets arrive, they get dropped and do not join the queue.

In this example, the random process (X0, X1, X2, ...) tracks the length of the queue which is

stochastic in nature. For one realization of the process, it might take the form of the sequence

(0, 1, 1, 2, 3, 3, 2, 1, 2, 2, ...) while for another it might be (0, 0, 0, 1, 0, 1, 2, 1, 0, 1, ...). Note that

here each Xi can be in one of the states {0, 1, 2, 3}. Markov chains provide a tractable

framework to model this process as the Markovian property is a natural assumption: the

length of a queue on a given time step n (i.e., Xn) is a function of the length at the previous

time step n − 1 (i.e., Xn−1) but it should not depend on the state at the time step before

that, Xn−2.

As previously mentioned, we can represent a Markov chain through either a matrix or graph

representation. For the process described in Example 9, the matrix representation is as
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follows.

P =


1− p p 0 0

q(1− p) (1− q)(1− p) + qp (1− q)p 0

0 q(1− p) (1− q)(1− p) + qp (1− q)p

0 0 q 1− q

 (3)

Likewise, the graph representation is given below.

0 1 2 31− p

p

q(1− p)

(1− q)(1− p) + qp

(1− q)p

q(1− p)

(1− q)(1− p) + qp

(1− q)p

q

1− q

Figure 11: Markov chain for Example 9

This system can be simulated using the graph or the matrix form. Using arbitrary parameters

p = 0.3 and q = 0.7, the code below shows one way in which we can obtain multiple

realizations of this stochastic system.

n_sims = 3

for sims in range(n_sims):

N = 10

curr = 0

n_states = 4

p, q = 0.3, 0.7

X = [curr]

for n in range(N):

if curr == 0:

probs = [1 - p, p, 0, 0]

curr = np.random.choice(n_states, p=probs)

elif curr == 1:

probs = [q*(1-p), (1-q)*(1-p)+q*p, (1-q)*p, 0]

curr = np.random.choice(n_states, p=probs)
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elif curr == 2:

probs = [0, q*(1-p), (1-q)*(1-p)+q*p, (1-q)*p]

curr = np.random.choice(n_states, p=probs)

elif curr == 3:

probs = [0, 0, q, 1-q]

curr = np.random.choice(n_states, p=probs)

X.append(curr)

print(X)

The code yields n_sims realizations of the system; for example:

[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]

[0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0]

[0, 0, 1, 1, 1, 2, 3, 3, 2, 2, 1]

For completeness, when using the parameters p = 0.3, q = 0.7, the transition matrix from

Equation 3 takes the following form.

P =


0.7 0.3 0 0

0.49 0.42 0.09 0

0 0.49 0.42 0.09

0 0 0.7 0.3



3.4. The Chapman-Kolmogorov Equation

The transition probabilities allow us to immediately quantify the probability of transitioning

from state i to a state j in one time step. Nonetheless, in order to understand the long-term

behavior of a Markov chain process, it is of interest to obtain the probabilities of going from

a given state i to another state j in a number of steps greater than one.

Formally, we define n−step transition probability P
(n)
ij as the probability of going from state

i to state j in n time steps for n ≥ 0:

P
(n)
ij = Pr(Xm+n = j|Xm = i)

(a)
= Pr(Xn = j|X0 = i) (4)
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where m is arbitrary and (a) holds because we assumed that the Markov chain is time-

invariant.

Likewise, we define the multi-step transition matrix P(n) where for each index (i, j) we have

P
(n)
ij , the probability of transitioning from state i to state j in n time steps. Consider again

Example 9, whose graph representation is reproduced below.

0 1 2 31− p

p

q(1− p)

(1− q)(1− p) + qp

(1− q)p

q(1− p)

(1− q)(1− p) + qp

(1− q)p

q

1− q

Figure 12: Markov chain for Example 9

It might be of interest, for example, to calculate the probability of having 1 person in the

queue at time t+2 given that we have 0 people at time t; that is, P(Xt+2 = 1|Xt = 0).

In order to calculate the probability of reaching state 1 from state 0 in 2 times steps, we

must consider all the different ways this may happen. In this example, this may occur in

two ways: (I.) we stay in state 0 for one time step and then transition to state 1 (0, 0, 1), or

(II.) we transition to state 1 in one time step and then stay in state 1 for another time step

(0, 1, 1). Mathematically, we can calculate this through the Law of Total Probability.

P(Xt+2 = 1|Xt = 0) = P(Xt+2 = 1|Xt+1 = 0, Xt = 1)P(Xt+1 = 0|Xt = 0)

+P(Xt+2 = 1|Xt+1 = 1, Xt = 1)P(Xt+1 = 1|Xt = 0)

(Total Probability)

= P(Xt+2 = 1|Xt+1 = 0)P(Xt+1 = 0|Xt = 0)

+P(Xt+2 = 1|Xt+1 = 1)P(Xt+1 = 1|Xt = 0) (Markov Property)

= p(1− p) + ((1− q)(1− p) + qp)p

For more general problems (i.e. to obtain the probability of reaching a state j at time m+n

conditioned on being at state i at time 0), we can apply theChapman-Kolmogorov Equa-
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tion. This equation is obtained directly by applying the Theorem of Total Probability.

P(Xm+n = j|X0 = i) =
∑
k∈S

P(Xm+n = j|Xm = k,X0 = i)P(Xm = k|X0 = i)

(Total Probability)

=
∑
k∈S

P(Xm+n = j|Xm = k)P(Xm = k|X0 = i) (Markov property)

=
∑
k∈S

P(Xn = k|X0 = i)P(Xm = j|X0 = k) (Time-invariance)

This equation represents a two-step process, the first with length n and the second m. In

order to get to state j in m+ n steps, we go through each possible intermediary state k and

consider the probability of reaching such state in n time steps. For each of these intermediary

states k, we compute the probability of then reaching the final state j in the remaining m

steps. Consider now the process of calculating the probability of reaching state j = 2 from

state i = 0 in three time steps, for example. Letting m = 1 and n = 2:

P(X1+2 = 2|X0 = 0) =
∑
k∈S

P(X2 = k|X0 = 0)P(X1 = 2|X0 = k)

= P(X2 = 1|X0 = 0)P(X1 = 2|X0 = 1) (Impossible)

+P(X2 = 1|X0 = 0)P(X1 = 2|X0 = 1)

(0→ 0→ 1→ 2 or 0→ 1→ 1→ 2)

+P(X2 = 2|X0 = 0)P(X1 = 2|X0 = 2) (0→ 1→ 2→ 2)

+P(X2 = 3|X0 = 0)P(X1 = 2|X0 = 3) (Impossible)

= 0

+ (p(1− p) + ((1− q)(1− p) + qp)p) (1− q)p

+ p(1− q)p((1− q)(1− p) + qp)

+ 0

= (p(1− p) + ((1− q)(1− p) + qp)p) (1− q)p+ p(1− q)p((1− q)(1− p) + qp)

Using the same arbitrary values p = 0.3, q = 0.7, for example, we obtain that the probability

is equal to values 0.04158. It is worth going through the work to convince yourself that the

Chapman-Kolmogorov partitions the sample space completely; you may also verify that the

equation remains valid for different choices of m,n.
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A critical property of the transition matrix follows from the Chapman-Kolmogorov equation.

Define as P(m) and P(n) the matrices containing the respective m,n-step transition probabil-

ities from each state i to j, P
(m)
ij and P

(m)
ij , respectively. Note that P(Xm+n = j|X0 = i) =∑

k∈S P(Xn = k|X0 = i)P(Xm = j|X0 = k), is by definition the (i, j)-index of the product

of the matrices P(m) and P(n). From this, we obtain that P(m+n) = P(m)P(n).

For the the case where m = n = 1, we have that P(m+n) = P(2) = P(m)P(n) = P(1)P(1) =

PP = P2. More generally, we have that P(k) = Pk. We prove this relationship via induc-

tion.

Base Case: for n = 2, we have that P(2) = P(1)P(1) = P2.

Induction Hypothesis: we assume that for n = k the relationship P(k) = Pk holds.

Induction Step: We prove that this relationship holds for n = k + 1.

P(k+1) = P(k)P(1) (since P(m+n) = P(m)P(n))

= PkP (Induction Hypothesis: P(k) = Pk)

= Pk+1

Therefore, in order to calculate the k-step transition probabilities from state i to j, one

must simply compute the (i, j)-entry of the matrix Pk. We can then obtain, for example

P3 = P2P1.

P3 = P2P1

=


0.637 0.336 0.027 0

0.5488 0.3675 0.0756 0.0081

0.2401 0.4116 0.2835 0.0648

0 0.343 0.504 0.153




0.7 0.3 0 0

0.49 0.42 0.09 0

0 0.49 0.42 0.09

0 0 0.7 0.3



=


0.61054 0.34545 0.04158 0.00244

0.5642 0.3560 0.070497 0.009234

0.369754 0.383817 0.201474 0.08136

0.16807 0.39102 0.34965 0.09126


As a sanity-check, we can observe that the entry (0, 2) of P3 is equal to 0.04158, the same

value we had obtained previously using Chapman-Kolmogorov’s equation directly. Moreover,
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assuming we have some estimates of the probability of being at each state at time t (call it

xt ∈ Rn), we can easily obtain the probabilities at the next time step through the recursive

equation xt+1 = PTxt.

3.5. Definitions & Classifications for States and Classes

In the context of Markov chains, we have a series of definitions and classifications which are

central to the study of this topic.

We first consider the classification of the relationship between two arbitrary states i, j. We

say a state j is accessible (i → j) by i if there exists n such that Pn
ij > 0; that is, the

probability of transitioning from i to j for some number of steps n is non-zero (and thus it

is possible to reach j from i in some number n of steps). Moreover, we say two states i, j

communicate (and we write i↔ j) if i→ j and j → i. For example, in the Markov chain

represented in Figure 13, state 5 is accessible from state 2 but they do not communicate;

states 4, 5, however, do communicate.

1

2

3 5

4

1

0.2

0.2

0.60.6

0.2

0.2

0.6 0.7

0.4

0.3

Figure 13: A Markov chain with multiple classes

A state i may be transient or recurrent. Intuitively, a state is classified as transient if

visits to this state are temporary (i.e. we may visit it a few times then possibly never again)

and recurrent otherwise. Formally, define the probability fi of visiting a state i after starting
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at state i as follows.

fi = P

(
∞⋃
n=1

Xn = i

∣∣∣∣∣X0 = i

)

Then, a state is classified as transient if fi < 1 and recurrent if fi = 1. In other words, if the

probability at some point of returning to a given state is equal to 1, we have a recurrent state

and a transient one otherwise. Consider again the Markov Chain in Figure 13. If we start

at state 2, for example, we may transition to state 1 at which point it will be impossible to

ever return to state 2; as such, f2 < 1 and state 2 is a transient state. Compare that with

state 4: while we may transition to state 5, it is the case that as n → ∞, we will revisit

state 4 since we are limited in transitioning to the states in red. Therefore, f4 = 1 and state

4 is a recurrent state.

We also define the period for a state. Formally, a state i has period d if d = max(d : P n
ii =

0 for all n /∈ D) where D = {kd|k ∈ 1, 2, 3, ...}. While the mathematical definition is a bit

nebulous, it effectively means that state i has period d if the probability of returning to

state i is non-zero (i.e. P n
ii ̸= 0) only when n is multiple of d and d is the largest number

with this property. For example, if state i is such that d = 3, it must be the case that the

probability of returning to state i after starting from state i in 4 or 5 time-steps is zero. Since

6 is a multiple of 3, however, it must be that the probability of returning in 6 time-steps is

non-zero (and the same is true for 9 time-steps, for example). If d = 1, we say that the state

is aperiodic. Consider the Markov Chain in Figure 14. If we start the process at state 2

(i.e. X1 = 2), we will be at either state 1 or state 3 on the next time step; in the third time

step, however, we are guaranteed to be at state 2 again. More generally, we have that on

even time steps (X2, X4, X6, ..., X2k) we will be either on state 1 or state 3. On odd time

steps (X1, X3, X5, ..., X2k+1), we are guaranteed to be on state 2. In other words, we have

that P 2
22 ̸= 0, P 4

22 ̸= 0, P 2k
22 ̸= 0 and that

P22 = 0, P 3
22 = 0, P 2k+1

22 = 0

. By the definition of periodicity, state 2 has period 2.
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1 2 3

1

p 1− p

1

Figure 14: A Periodic Markov Chain

Finally, we define classes. A class of states T is defined such that for all states i, j ∈ T

we have that i ↔ j and there is no pair of states i ∈ T, k /∈ T such that i ↔ k. More

directly, it’s the largest possible subset of states where all states communicate with each

other. Interestingly, if a member from a class is transient or recurrent, so is the class as a

whole. Therefore, the transient and recurrent properties can be used to classify classes as a

whole. In the example in Figure 13, it follows that the classes highlighted in blue and red

are recurrent while the one in green is transient. Similarly, it can be shown that periodicity

is also a class-wide property.

3.6. Limit Distributions

Much of the discussion involving Markov chains so far made use of conditional expectations;

that is, we have been focusing on questions such as the probability of reaching state j given

that we are in state i. After all, from the Law of Total Probability, P(Xn = j) =
∑

i P(Xn =

j|X0 = i)P(X0 = i). For illustration purposes, consider again the Markov chain defined in

Figure 13: the probability of reaching state 1 from state 4, 5 is zero for any n while from

states 2, 3 it is non-zero. As we will see, however, under specific circumstances, the initial

condition does not affect the probability of reaching a state in the long-run.

Define as an irreducible Markov chain a Markov chain with one (and only one) commu-

nication class; in graph theory, this corresponds to a strongly connected component. For a

finite, aperiodic irreducible Markov chain, the limiting probability limn→∞P(Xn = j|Xi = i)

exists and it is independent of the starting state i (that is, limn→∞ P(Xn = j|Xi = i) =

limn→∞P(Xn = j)). Moreover, the limiting probability limn→∞ P(Xn = j) is such that

limn→∞P(Xn = j) = πj where π = [π1, π2, ..., πn]
T is the unique solution to the system of
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equations below. πj =
∑

i πiPij ∀j Balance Equations∑
i πi = 1

In matrix representation, the balance equations can be written as follows:

π = PTπ (5)

The proof of the existence of the above limit and its independence from the initial state rely

on the chain being aperiodic and irreducible and it is beyond the scope of this course.

But the balance equations can be seen (without formal rigor) through simple algebraic

manipulation.

P(Xn+1 = j) =
∑
i

P(Xn+1 = j|Xn = i)P(Xn = i) (Total Probability)

lim
n→∞

P(Xn+1 = j) = lim
n→∞

∑
i

P(Xn+1 = j|Xn = i)P(Xn = i)

πj =
∑
i

P(Xn+1 = j|Xn = i) lim
n→∞

P(Xn = i)

πj =
∑
i

Pijπi

These results can be seen numerically as well. Note first that P
(n)
ij = limn→∞P(Xn = j) =

πj,∀i. This implies the following.

lim
n→∞

Pn =


π1 π2 . . . πj

π1 π2 . . . πj

...
...

...
...

π1 π2 . . . πj


Consider our motivating example in Figure 12. We can calculate P100 as an approximation

of the limiting distribution. It can be seen that the resulting matrix has the same structure
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as the one above.

P =


0.7 0.3 0 0

0.49 0.42 0.09 0

0 0.49 0.42 0.09

0 0 0.7 0.3

 lim
n→∞

Pn ≈ P100 =


0.575 0.352 0.065 0.008

0.575 0.352 0.065 0.008

0.575 0.352 0.065 0.008

0.575 0.352 0.065 0.008


Estimating limiting probabilities by matrix multiplication, however, can be very expensive

(especially for large Markov chains) and potentially inaccurate. The theoretical method

leverages the balance equations described in (5). The balance equations imply the fact that

the limit distribution π is a stationary distribution, which means that the probabilities of

being at each state do not change with time. To see this, let πt be the (vector consisting of

the) probabilities of being in different states at time t and recall that the one step evolution

of the probabilities is captured by πt+1 = Pπt (see Section 3.4). Now the balance equations

imply that πt = πt+1 = π for large t, meaning that the after running the Markov chain for a

very long time, the probabilities of being at each state converge and no longer change with

time.

Another view on (5) reveals from Linear Algebra that finding π is related to an Eigenvalue

Problem: The limiting distribution can be obtained by the (properly normalized,
∑

i πi = 1)

eigenvector of PT associated with the eigenvalue λ = 1. Importantly, λ = 1 is the eigenvalue

largest in absolute value (otherwise, Pn would not converge).

n = 10

dist = np.zeros((n, 15))

for iter in range(15):

x = np.random.random(size=4)

x = x / np.sum(x)

print(x[0])

dist[0, iter] = x[1]

for i in range(1, n):

x = P.T @ x

dist[i, iter] = x[1] / np.sum(x)

plt.plot(dist)

plt.xlabel('$n$')
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plt.ylabel('$x_1$')

plt.grid()

plt.show()

Figure 15: Convergence of several randomly initialized x1 to

π1 = 0.352 after 10 iterations of x1 ← PTx1

3.7. Limit Distributions in Markov Chains with More than One

Class

The discussion in Section 3.6 focuses on limit distributions with a single class. Here, we

consider cases involving more than one class. This is the case, for example, of the Markov

chain from Figure 13 which is reproduced below.

1

2

3 5

4

1

0.2

0.2

0.60.6

0.2

0.2

0.6 0.7

0.4

0.3

The main difference we observe when we have more than one class is that the solution π to

the system of two equations πj =
∑

i Pijπi and
∑

i πi = 1 (or alternatively the number of
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eigenvectors with associated eigenvalue λ = 1) will not be unique. In fact, we will obtain

one solution for each recurrent class. This should make sense: if we start in state i belonging

to a recurrent class C1 the long-term probability of being at a state j ∈ C2 will be zero (and

vice-versa). Consider the following simple Markov chain.

0 11 1

The transition matrix for the Markov chain above is simply the 2 × 2 identity matrix I

with eigenvectors v1 = [1, 0]T , v2 = [0, 1]T and eigenvalues λ1 = λ2 = 1. This should make

sense: if we start at state 0, the limit probability is simply being at state all the time

and analogously for state 1. Consider now the following Markov chain and corresponding

transition matrix.

0 1 21
0.4 0.4

1

0.2

P =


1 0 0

0.4 0.2 0.4

0 0 1


Here, the eigenvectors with λ = 1 are v1 = [1, 0, 0]T and v2 = [0, 0, 1]T . For this Markov

chain, we have two possible cases. In Case (I.), the system is initialized in state 0 or 2 and it

stays in the corresponding state; in Case (II.), it is initialized in State 1 (a transient state)

and eventually transitions to either state 0 and 1 and we are back to Case (I.). This explains

why in both cases the limit probability is such that π1 = 0. Moreover, consider the value of

limn→∞Pn.

lim
n→∞

Pn =


1 0 0

0.5 0 0.5

0 0 1
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That matrix tells us that in the long-run the probability of transitioning to state 1 is zero and

with probability 1/2 each we transition from state 1 to states 0, 2. Consider the following

starting probability x0 = [0, 1, 0]. The result limn→∞ Pnx0 = [0.5, 0, 0.5]T implies that after

n→∞ steps, there is zero probability of being at state 1 and probability 1/2 of being at each

state 0, 2. While it may continue at state 1 for a while, the probability of staying there forever

is zero (limn→∞(0.2)n = 0) Likewise, with x0 = [1, 0, 0], we have limn→∞ Pnx0 = [1, 0, 0]T , a

result that should match our intuition (starting at state 0, we remain there with probability

1).

With the results so far, we can develop a more systematic approach to analyze multi-class

Markov chains. Consider once again the three-class Markov chain from Figure 13. The

corresponding transition matrix is given below.

P =



1 0 0 0 0

0.2 0 0.6 0.2 0

0.2 0.6 0 0 0.2

0 0 0 0.3 0.7

0 0 0 0.6 0.4


Let’s try to find limn→∞Pn without directly computing it — a process that should give

further insights into the workings of Markov chains. We know states 2, 3 consist of a transient

class, call it C2. After an infinite number of steps, we should expect that the probability of

transitioning to those states should be zero. Therefore:

lim
n→∞

Pn =



? 0 0 ? ?

? 0 0 ? ?

? 0 0 ? ?

? 0 0 ? ?

? 0 0 ? ?


Additionally, observe that the probabilities of transitioning out of C2 to C1 (consisting of

state 1) and to C3 (consisting of states 4, 5) are the same. This is the case since we can

transition to C1 via state 2 (P21 = 0.2) or via state 3 (P31 = 0.2) and we can transition to

C3 via state 2 (P24 = 0.2) or via state 3 (P35 = 0.2); therefore, PC2C1 = PC2C3 = 0.5.
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We also know that class C3 (composed by states 4, 5) is an aperiodic, recurrent class. We can

therefore treat this class independently from the rest of the chain to calculate the long-term

behavior when the initial state is there. From the bottom-right corner of the original matrix,

we have that the behavior of that class is ruled by the following transition matrix.

lim
n→∞

Pn
C3 =

0.3 0.7

0.6 0.4


The corresponding normalized eigenvector for the transpose of this matrix is πC3 = [0.4615, 0.5385]T .

This gives us the long-term probabilities of being at states 4, 5 assuming that we start in

one of those two states. If we start in state 1, the probability is 0; if we start in state

2, 3, however, we know that the probability of transitioning to class C3 is 0.5. We weigh

the values obtained in πC3 = [0.4615, 0.5385]T by 0.5 in order to obtain the long-term

probability of ending up at states 3, 4 assuming we start at C2. As a result, we obtain

[0.5× 0.4615, 0.5× 0.5385] = [0.231, 0.269]. Therefore:

lim
n→∞

Pn =



? 0 0 0 0

? 0 0 0.2308 0.2693

? 0 0 0.2308 0.2693

? 0 0 0.4615 0.5385

? 0 0 0.4615 0.5385


Finally, we repeat the same procedure for class C1, likewise weighting the probabilities as we

did before. Note that since C1 is composed of only one state, it follows that πC1 = [1]T and

limn→∞Pn
C1 = [1]. This yields the following matrix.

lim
n→∞

Pn =



1 0 0 0 0

0.5 0 0 0.2308 0.2693

0.5 0 0 0.2308 0.2693

0 0 0 0.4615 0.5385

0 0 0 0.4615 0.5385
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Indeed, we obtain computationally the following:

lim
n→∞

Pn ≈ P100 =



1 0 0 0 0

0.5 0 0 0.2308 0.2693

0.5 0 0 0.2308 0.2693

0 0 0 0.4615 0.5385

0 0 0 0.4615 0.5385



3.8. Application: The Gambler’s Ruin Problem

In this section, we introduce Discrete-Time Markov chains as a framework to analyze quan-

titatively and qualitatively a stochastic process. The description of the problem is given

below.

Example 10 A gambler begins with an initial wealth w0. She places bets on a simple game

where with probability p she gets an extra dolar (wt = wt−1+1) and with probability q = (1−p)

she loses a dollar (wt = wt−1 − 1). She continues to play until she is broke (wt = 0) or she

has a total of N dollars (wt = N).

For this problem, we can construct a Markov chain where each state i corresponds to an

amount of wealth (i.e. state k corresponds to wk). Observe that we have three classes

here: two recurrent (0, N) and one transient (i, ∀i ̸= 0, N). From before, we know that the

probability of being at any transient state as n→∞ is equal to zero, and thus we will either

reach states 0 or N .

0 1 · · · N − 1 N1

q

p

q

p

q

p

1
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Furthermore, define Si as the probability of success (i.e. reaching N) conditioned on being at

state i. Therefore, for all i ̸= 0, N , we have the following (note that S0 = 0, SN = 1):

Si =
∑
k

SkP(Xt+1 = k|Xt = i) (Total Probability)

Si = Si+1p+ Si−1q

(p+ q)Si = Si+1p+ Si−1q (p+ q = 1)

p(Si+1 − Si) = q(Si − Si−1)

Si+1 − Si = α(Si − Si−1) (α = q/p)

At this point, we observe that S0 = 0 (probability of success when broke is zero) and therefore

we have that S2−S1 = αS1. By substitution S3−S2 = α(S2−S1) = α2S1 and more generally,

by induction, it follows that Si − Si−1 = αi−1S1.

Next, we can sum up the probabilities up to i as follows to obtain a closed-form equation

for Si as a function of S1. Here, we assume α < 1.

(Si − Si− 1) + (Si−1 − Si−2) + ...+ (S2 − S1) = αi−1S1 + αi−2S1 + ...+ αS1

Si − S1 = S1(α
1 + α2 + ...+ αi−1)

Si = S1(1 + α1 + α2 + ...+ αi−1)

Si = S1

i∑
k=1

αk−1

Si = S1
1− αi

1− α

Here, we use the fact that SN = 1 (the probability of success with wealth N is 1); then.

1 = SN

1 = S1
1− αN

1− α

S1 =
1− α

1− αN
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Finally, we obtain the following.

Si = S1
1− αi

1− α

Si =
1− α

1− αN

1− αi

1− α

Si =
1− αi

1− αN

With a closed-form equation for Si, we can several insights into this process.

I. If α = 1 (i.e. the probabilities of winning or losing are equal), it can be shown that

Si = i/N . That is, the probability of success is simply a function of how close you are

to the target wealth N (i.e. limi→N i/N = 1).

II. For a large Markov chain (large N) and α > 1 (i.e. the probability of losing in each

round is greater than that of winning), limN→∞(1−αi)/(1−αN) = 0. In the long-run,

the probability of winning approaches zero.

III. For a large Markov chain (large N) and α < 1 (i.e. the probability of winning in each

round is less than that of winning), limN→∞(1 − αi)/(1 − αN) > 0. In the long-run,

the probability of winning are non-zero.

Figure 16: Probabilities Si for α = 1/4, α = 3/4, α = 2, α = 1/2 (left to right)
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While the values in Figure 16 were obtained analytically, it is possible to also obtain infor-

mation via simulations. Consider a similar situation where we do not have a wealth limit N

and instead the gambler plays until she is broke or M rounds have occurred.

Define the random variables Wt which corresponds to the wealth at time step t; define also

the indicator random variable Xt which indicates whether the gamble was won at time t. It

follows that Wt+1 = Wt + (2Xt - 1) and recursively we can obtain E[Wt+1] = w0 + (2p− 1)t.

Consider now 50 simulations with p = 0.55, w0 = 20 and M = 1000.

N, t, w, T_max, p, n_sims = 50, 0, 20, 1000, 0.55, 50

results = np.zeros((n_sims, T_max))

for sim in range(n_sims):

t = 0

w = 20

while t < T_max and w != 0:

x = 1 if random.random() < p else 0

if x == 1:

w += 1

results[sim, t] = w

else:

w -= 1

results[sim, t] = w

t += 1

X = np.zeros((n_sims, T_max))

for sim in range(n_sims):

X[sim] = np.arange(0, 1000)

lr = LinearRegression().fit(X.reshape(-1, 1), results.reshape(-1, 1))

exp = lr.coef_ * np.arange(0, 1000).T + lr.intercept_

mean = np.mean(results, axis=0)

plt.plot(results.T, color='blue', linewidth=0.5, alpha=0.5)

plt.plot(mean, color='red')

plt.plot(exp, color='green')

plt.xlabel('$t$')

plt.ylabel('$i$')

plt.show()
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Figure 17: Simulation results for 50 realizations of the stochastic process.

Green is linear fitted model, red is average, blue are individual realizations

Indeed, fitting a linear model ŷi = β̂0 + β̂1xi, we obtain β̂0 = 22.138 and β̂1 = 0.0985, both

close to the actual values w0 = 22 and (2p−1) = (2×0.55−1) = 0.1. This shows the process

of estimating parameters from a stochastic process through a combination of analytical steps

and a number of realizations of said process.

3.9. Ergodicity

3.9.1. Definitions

We first define the random variable Ni which represents the number of times that we visit

state i such that Ni =
∑∞

j=1 1(Xj = i). Recall we defined fi as the probability of revisiting

state i after starting at state i in any number of steps. Therefore, the probability of the

total number of visits to a state i being equal to n should be equal to the probability of

visiting it n times and never visiting it again. It therefore follows a geometric distribution

with parameter fi (i.e. P(Ni = n) = fn
i (1− fi)). With this formulation, one sees that when

fi = 1, i.e., when the state is recurrent, we have E[Ni] = ∞ and when state i is transient,

E[Ni] <∞.

Now define the minimum number of steps to revisit a state, τi = minn(Xn = i|X0 = i).

State i is positive recurrent if E[Ni] = ∞, E[τi] < ∞ and is null recurrent if E[Ni] =

∞, E[τi] = ∞. Similar to our previous state classifications, positive recurrence and null

recurrence are also class properties. If a class is positive recurrent, and a-periodic, it is

called ergodic.

ESE 3030 - Stochastic Systems Analysis and Simulation 46 of 86



3 Discrete-Time Markov Chains

A finite state Markov chain that is irreducible is necessarily positive recurrent because it

has one and only one class and all the finite states cannot be transient or null-recurrent.

Irreducible Markov chains of infinite (countable) states can, however, be null recurrent.

Example 11 The following infinite Markov chain exemplifies a case of null recurrence.

0 1 2 3 · · ·1/2

1/3

1/4

1 1/2 2/3

The probability of returning in 2 time steps is P(τ0 = 2) = 1 × 1/2 = 1/2 and for 3 time

steps is P(τ0 = 3) = 1× 1/2× 1/3 = 1/6. More generally, P(τ0 = t) = 1/(t− 1)× 1/t. We

can then calculate the expected value of the random variable τ0.

E[τ0] =
∞∑
i=2

t× 1

t− 1
× 1

t
=∞ (diverges)

We can also calculate the probability of returning to state 0.

f0 =
∞∑
i=2

1

t− 1
× 1

t
= 1

Since f0 = 1, we have that E[N0] = ∞. We therefore have that for state 0, E[τ0] =

∞, E[N0] =∞ and it is classified as null recurrent state.
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3.9.2. Ergodic averages

With ergodic classes, limn→∞P(Xn = j|Xi = i) = limn→∞ P(Xn = j) applies. Define T
(n)
i

as the amount of time spent at state i up to time instant n. Then:

T
(n)
i =

1

n

n∑
j=0

1[Xj = i]

E[T (n)
i ] =

1

n

n∑
j=0

E[1[Xj = i]] (Linearity of Expectation)

=
1

n

n∑
j=0

P(Xj = i) (Expectation of Indicator r.v.)

In the limit, we have that limn→∞ E[T (n)
i ] = limn→∞P(Xj = i) = πi. In the case of ergodic

Markov chains, a single run of the Markov chain is representative of the entire stochastic

process and thus the expected value is not required (i.e. limn→∞ T
(n)
i = πi). This means that

in order to find the limit probabilities in ergodic Markov chain, we just need to calculate the

average fraction of time spent at each state. Moreover, let f : S → R; for example, it might

be a function associated with a reward for each state i ∈ S. Then, for an ergodic Markov

chain, limn→∞ 1/n
∑n

j=1 f(Xj) =
∑∞

i=1 f(i)πi.

3.10. Application: Discrete-Time Queueing Theory

Example 12 Consider the discrete-time communication queue system represented in the

block diagram below. In this system, we have a queue with limited length M . Packets enter

the queue at each time with probability λ and they leave the queue at each time step with prob-

ability µ. Since the events of packet arrival and departure are stochastic, it may happen that

a packet that arrives has to wait in the queue until it is its turn to be processed/transmitted.

Any packet received when the queue is full is immediately dropped. Let D be the event where

a packet is dropped. What should be the value of M such that P(D) < 10−6? We assume

that arrival and departure from the queue do not take place at the same time step.

Queue (limited space M) Processor (rate µ/δ)
Arrival (prob. λ/δ)

In order to be able to analyze the packet drop probability, we need to know when the queue
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0 1 · · · M − 1 M1− λ

λ

µ

1− λ− µ

λ

µ

1− λ− µ

λ

µ

1− λ− µ

λ

µ

1− µ

Figure 18: MC representing the evolution of the number of people in the queue.

is full and for this purpose we have to keep track of the length of the queue. For this purpose,

we use Markov chains. The number of states is M , each state i, i = 1, 2, . . . ,M representing

the event that there are i packets in the queue. Transitions happen between consequent

states i− 1, i, i+1 because we move from state i to i+1 whenever a packet arrives, and we

move from state i to i− 1 when a packet leaves. Otherwise, we stay in state i.

Now we have to quantify the transition probabilities. The probability of a new packet

arriving is λ and therefore the probability of transitioning from state i to i+1 is λ for every

state i = 1, . . . ,M − 1. For state i = M , we would stay in state i whether a packet arrives

or not. Similarly, the probability of transitioning from state i to i − 1 is µ for all states

i = 1, 2, . . . ,M . For state 0, we would stay in state 0 whether a packet leaves or not. The

probability of no packet arriving or leaving is 1 − λ − µ, and for i = 1, 2, . . . ,M − 1, this

determines the probability of staying in state i, for state 0 the probability of staying in state

0 is 1 − λ and for state M it is 1 − µ. The Markov chain is then given as follows. We now

consider this Markov process in its steady state where the probability of being in state i is

πi.

Observe that a packet drop occurs with probability P(D) = πMλ, the probability of being

at state M and receiving a new packet.

We thus need to find the steady-state probabilities π1, π2, . . . , πM . We do so using the balance
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equations (and the fact
∑

i π = 1). The balance equations are given below

π0 = π0(1− λ) + π1(µ)

πi = πi−1(λ) + πi(1− λ− µ) + πi+1(µ)

πM = πM−1(λ) + πM(1− µ)

In order to find values for πi, we first manipulate the above equations to get the follow-

ing.

π1 =
λ

µ
π0

πi+1 − πi =
λ

µ
(πi − πi−1)

πM =
λ

µ
πM−1.

Therefore.

πi+1 − πi =

(
λ

µ

)i

(π1 − π0)

=

(
λ

µ

)i

(
λ

µ
− 1)π0.

We then obtain the following.

πi =

(
λ

µ

)i

π0.

It is only left to find π0. We do this by using the fact that the sum of πi should be equal to

1; that is.

M∑
i=0

(
λ

µ

)i

π0 = 1.

Using the fact that

M∑
i=0

αi =
1− αM+1

1− α
,

Let α = λ/µ. We then find the following.

1− λ
µ

M+1

1− λ
µ

π0 = 1

π0 =
1− λ

µ

1− λ
µ

M+1
.
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Plugging the equation for π0 above back into the general equation for πi, we find the follow-

ing.

πi =
1− (λ/µ)

1− (λ/µ)M
(λ/µ)i ∀i = 0, 1, . . . ,M.

If λ = 0.3, µ = 0.5, for example, we obtain M ≈ 25. Note that as λ and µ get closer, the

value of M should increase. This makes sense: if the arrival rate is a lot smaller than the

processing rate, we should not worry about overflow. With closer values λ = 0.75, µ = 0.8,

we obtain a larger value for M than before with M ≈ 171 .

3.11. Markov Chains with Rewards

In applications such as statistical decision-making, we model a Markov chain where each

state i has a reward ri associated with it. This means that as the process {X1, X2, ...}

evolves, depending on the states that are visited, a sequence of rewards R(Xi) is collected.

Looking at {R(X1), R(X2), . . .} as another random process, it should be clear that that (i)

rewards are functions of the states, and (ii) the reward sequence is not i.i.d.. While we

use the term reward, this may capture other values associated with states such as cost or

time.

It is not difficult to see that the time-average reward until time n would be 1
n

∑n
i=1R(Xi)

which would converge, for an ergodic MC, to
∑

i πiri when n is very large. This is called the

long-term stationary reward. In many problems, however, we are interested in the expected

aggregate reward up to a fixed time n, or until a predetermined stopping time; Examples

13, 14 deal with this type of situation.

3.11.1. Expected Reward until Specific Event

Example 13 We consider a problem where we want to find the expected amount of time

until we visit state 1 in the Markov chain given below.
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1

2

3

4

0.5

0.5

0.1 0.9

0.4

0.6

0.70.3

For this problem, we first observe that analyzing the Markov chain below is equivalent. The

only change between the two is that we remove the transitions out of state 1; since we are

only interested in what happens before we reach state 1, it should be clear that they will yield

the same results. Since we cannot transition out of state 1, we call it a trapping state.

1

2

3

4

1

0.1 0.9

0.4

0.6

0.70.3

Let vi be the expected reward (or more specifically, in this case, wait time) until we reach

state 1 starting from state i. Consider if we had an additional state 5 that with probability 1

transitions to state 1 and that no state transitions into it; in that case, it is straightforward

that v5 = 1. For cases such as in this matrix where we do not transition with probability

1 to state 1, the value of vi is equal to 1 (the reward/cost associated with the state) plus a

weighted average of each vj (where j are the states that i can transition to and the weights

are the corresponding probabilities). For states 1, 2, 3, 4, we then have the following.

v1 = 0

v2 = 1 + P23v3

v3 = 1 + P32v2 + P34v4

v4 = 1 + P43v3
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We can write this in matrix form as follows (with the condition that v1 = 0).

v = r+Pv
v1

v2

v3

v4

 =


0

1

1

1

+


1 0 0 0

0.1 0 0.9 0

0 0.4 0 0.6

0.3 0 0.7 0




v1

v2

v3

v4



=


v1

1 + 0.1v1 + 0.9v3

1 + 0.4v2 + 0.6v4

1 + 0.3v1 + 0.7v4



=


0

1 + 0.9v3

1 + 0.4v2 + 0.6v4

1 + 0.7v3



=


0

9.18

9.09

7.36


Note that since the corresponding Markov chain is ergodic, the solution is unique. This

would not be the case in case this property did not hold. The code below simulates this

Markov chain to find these statistics.

P = np.array([[1, 0, 0, 0],

[0.1, 0, 0.9, 0],

[0, 0.4, 0, 0.6],

[0.3, 0, 0.7, 0]])

n_sims = 5000

n_steps = 80

count = np.zeros((4, n_sims))
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for state in [1, 2, 3]:

for sim in range(n_sims):

steps = 0

x = np.zeros(4)

x[state] = 1

for step in range(n_steps):

probs = P.T @ x

# Obtain the next state and update state vector

next_state = np.random.choice(4, p=probs)

x = np.zeros(4)

x[next_state] = 1

# Remember Python is zero-indexed

if next_state == 0:

count[state, sim] = steps + 1

break

else:

steps += 1

print('Average time to reach state {}:'.format(state),

np.mean(count[state]))

The output is 9.12, 9.17, and 7.28 for states 2, 3, and 4, respectively. This matches our

theoretical result nicely.

Example 14 We next consider an application in queueing theory that can best be understood

using Markov Chains with rewards. Suppose that we have a queueing system with arrival

rate λ, server processing rate µ, and buffer capacity M . As discussed before, the number

of customers in the queue can be modeled by the Markov chain shown in Fig. 18. We are

now interested in the expected sum of the customer waiting times, assuming that we have

i customers waiting, until the system becomes idle again (i.e. reaches state 0 for the first

time).

In order to do this, we must (i.) count the amount of time it takes for each existing customer

to leave the system and (ii.) count the amount of time customers that arrive in the system

to leave. The first step to model this problem is to modify the Markov of Fig. 18 by making
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state 0 (the idle state) recurrent so there is no transition out of state 0 when it is visited.

This captures the fact that we stop as soon as we arrive to state 0. We refer to this new

Markov chain as the modified Markov chain.

Next, to understand the expected sum waiting times, look at Figure 19 (left). The x-axis

shows the time of arrival and departure. The y-axis looks at different customers. For example

at time t, customer 1 is in the system and so is customer 2. There are then 2 customers in

total in the system (represented by the y value).

We are interested in the sum of the wait times from time t where there are i = 2 customers

in the queue until time t′ where the system is idle for the first time. This is equal to the total

sum of the red intervals in Figure 19 (center). We approach this problem using a double

counting trick and translate it into a Markov chain problem with rewards. More precisely,

one can see that the total sum of the red x-intervals is the same as the total sum of the green

y-intervals in Figure 19 (right). Each green interval at time t has a value exactly equal to

the number of customers in the queue at that time step. Let reward ri = i for each state

i. Then, the expected total sum of the green y-intervals is equal to the expected aggregate

reward of the MC until being trapped in state 0.

Figure 19: Sum of customer wait times

As before, let vi be the expected aggregate reward until being trapped in state 0, assuming

that we start from state i. Then, can find vi as the unique solution of the matrix equation

below (with the condition v0 = 0).

v = r+Pv

Here, v is the vector stacking all vi’s, r is the reward vector [0, 1, 2, . . . ,M ]T , and P is the
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transition probability matrix of the modified MC (in which state 0 has no outgoing edges

and is a trapping state).

Example 15 A drunken man has arrived at a small airport with a main area that leads to

three gates. Going from the main area of the airport to gate 1 takes 5 minutes (one way),

going to gate 2 takes 2 minutes (one way), and going to gate 3 takes 2 minutes (one way).

His flight leaves from gate 3. If he walks to any of the other two gates, he will need to walk

back to the main area of the airport. He is so drunk that he chooses each gate uniformly at

random with probability 1/3 .

We construct the following Markov chain where state 0 corresponds to the main area and

states 1, 2, 3 corresponds to the respective gates.

0

1

2

3 1

1/3

1/3

1/3

1

1

Then, we follow the same framework from Example 13. Here, however, we use the time to

walk to and back each gate. We also know that v3 = 0, since the time to get to state 3 while

at state 3 is zero. A simulation similar to that in Example 13 provides empirical evidence of

the formulation given above.
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v = r+Pv
v0

v1

v2

v3

 =


0

10

6

2

+


0 1/3 1/3 1/3

1 0 0 0

1 0 0 0

0 0 0 1




v0

v1

v2

v3



=


16

26

22

2


As a solution, we obtain that v0 = 16. This means that in expectation it will take 18 minutes

for the drunken man to arrive at the gate 3 starting at the main area.

3.11.2. Expected Aggregate Reward over Multiple Transitions

So far, we have seen that the aggregate reward until getting trapped in a trapping state,

starting from state i, can be computed by solving a system of linear equations. Now we

consider the expected aggregate reward over multiple transitions.

Consider the Markov process {X1, X2, . . .}. At time m, suppose that Xm = i, i.e. the chain

is in state i. We denote the aggregate expected reward over n transitions, starting from state

i by vi(n) and we thus have

vi(n) = E[R(Xm) +R(Xm+1) +R(Xm+2) . . .+R(Xm+n−1)|Xm = i]

= E[R(X0) +R(X1) +R(X2) . . .+R(Xn−1)|X0 = i]

= ri +
∑
ij

[P]ij rj +
∑
ij

[
P2
]
ij
rj + . . .+

∑
ij

[
Pn−1

]
ij
rj.

Note that
[
Pk
]
ij
denotes the i, jth element of matrix Pk.

The above can be extended to include a final reward for states as well. Let ui be the

corresponding final state reward for state i. This is a reward that is collected once we end
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up in state i after n transitions. It could also capture the “value” of state i. Including it in

our formulation leads to the following.

vi(n) = ri +
∑
ij

[P]ij rj +
∑
ij

[
P2
]
ij
rj + . . .+

∑
ij

[
Pn−1]

]
ij
rj +

∑
ij

[
Pn]
]
ij
uj.

We illustrate this with an example.

Example 16 Consider the following two-state Markov chain with rewards r1 = 0 for state

1 and r2 = 1 for state 2. Calculate v1(n), v2(n) for n = 1, 2.

Here, we see that for n = 1 we have

v1(1) = r1 = 0

v2(1) = r2 = 1

and for n = 2, we have

v1(2) = r1 + P11r1 + P12r2 = 0

v2(2) = r2 + P21r1 + P22r2 = 1.99.

Moreover, the long-term (stationary) reward for this chain is π1r1 + π2r2 = 0.5 because for

this completely symmetric MC, the stationary distribution is given by π1 = π2 = 1/2.

So far, we have seen how to compute expected aggregate reward in n transitions over a

Markov chain with rewards. Markov chains with rewards are key elements in Markov deci-

sion processes and here we briefly discuss Markov decision processes and dynamic program-

ming.

3.12. Markov Decision Processes

In many applications, an agent faces sequential decision-making in a stochastic environment

that can model by a Markov chain. The agent’s actions lead to some rewards but also

interact with the environment.
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For example, the environment may be an island being explored by a robot. The states may

represent the robot’s location (e.g. in a grid manner) and the robot’s actions may be to go

north, east, west, or south. Once actions are chosen, however, the robot may not end up

in the expected state (because of the non-smooth paths, or stochasticity); for example, if

the robot chooses to go north, he may go north 80% of the time, go right 20% of the time,

or may remain in its location if there is an obstacle that the robot is not aware of which

may happen with some probability in our model. These probabilities would depend on the

current location of the robot (the state) as well as its action.

Also, depending on the action and the state, the agent collects rewards (or costs). These may

take the form of a reward for not being damaged by bumping into obstacles or falling into

holes. For costs, we may consider the time or distance the robot had to move, for example.

Finally, as previously discussed, depending on the action, there may also be a final-state

reward, for example, a large reward if the location of a treasure is found.

In general, we have an environment that has state Xt at time t, an agent that takes action

At at time t and in return receives a reward that is dependent on Xt and the action At.

Depending on the action and the state, the environment’s state consequently changes to

Xt+1 in the next time step. The goal is for the agent to maximize his reward. This reward

may be over a finite time horizon, looking at n steps ahead.

In previous sections, without the need to do decision-making, we modeled our problems by

a Markov chain (with rewards) that was composed of M states, a transition probability

matrix P, and a set of rewards {ri}i. When modeling decision-making, we consider the

following setting: in each state i, the agent has a set of Ki possible actions. Each action

k, k = 1, 2, . . . , Ki, has a corresponding transition probability matrix P(1),P(2), ...,P(Ki)

and reward r
(k)
i . If the agent chooses action k, reward r

(k)
i is collected from state i and

the system moves from state i to another state j with probability P
(k)
ij . For multiple time-

steps, we consider this process repeatedly and find the maximum aggregated reward. This

framework is exemplified below.

Example 17 Consider a Markov chain with states 1 and 2 where we can make decisions

(Decision 1 or Decision 2) when in state 2. In state 1, the corresponding reward is r1 = 0
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and we would remain in state 1 with probability P11 = 0.99 or go to state 2 with probability

P12 = 0.01. In state 2, we have two possible actions. Under Decision 1, we get reward

r
(1)
2 = 1 and transition out of state 2 to state 1 with probability P

(1)
21 = 0.01 and to state 2

with probability P
(1)
22 = 0.99. Under Decision 2, the reward is r

(2)
2 = 50 and we move to state

2 with probability P
(2)
21 = 1. Figure 20 illustrates this.

Figure 20: Two-state MC with decisions in state 2.

We are now interested in finding optimal policies that would maximize the expected aggregate

reward. If we just look at the two Markov chains separately and look at the overall long-term

stationary rewards, we see that the Markov chain corresponding to Decision 1 has steady-

state probabilities (where the superscript indicates the decision associated with it) equal to

π
(1)
1 = π

(1)
2 = 1/2 and therefore the long-term (stationary) reward would be 1/2×0+1/2×1 =

1/2. For the Markov chain of Decision 2, however, we have π
(2)
1 = 100/101 and π

(2)
2 = 1/101

and the long-term (stationary) reward would be 100/101 × 0 + 1/101 × 50 ≈ 0.495. In

this sense, Decision 1 offers higher rewards in the long run. Nonetheless, if we look at the

problem over a finite time horizon, this is not the case. For example, if we are deciding

between Decisions 1 and Decisions 2 to maximize the expected reward in a single time step

while at state 2, then choosing Decision 2 is optimal since the corresponding reward is 50

compared to 1 under the Markov chain of Decision 1. More generally, we are interested in

optimal dynamic policies in order to maximize the expected aggregate reward for n time

steps.

The optimal policy may depend on the state, the duration of time over which rewards are

collected, and time. More precisely, consider decision-making at time m+h, for maximizing

aggregate reward over m,m + 1, . . . ,m + n − 1. The agent’s decision may depend on h, n,
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and Xm+h, but not on the state or action of the past (i.e. time m,m + 1, ...,m + h − 1).

This justifies the name Markov Decision Processes, as once again the history of the process

given the present does not affect the decision-making — another appearance of the Markov

property.

Let’s start by considering n = 1, i.e., the optimal policy for one time-step. Let’s further

allow a final state reward uj for each state j, the value of ending up in that state. In this

case, the expected aggregate reward in state i, under action k is r
(k)
i +

∑
j P

(k)
ij uj. Let u

be the vector of final state rewards; since we are conducting decision-making in one time

step only, the optimal action would be the action k such that v⋆i (1,u) = r
(k)
i +

∑
j P

(k)
ij uj is

maximized.

We now move on to n = 2. Suppose that at time m, we aim to look for the optimal

policy considering time steps m and m + 1 (i.e. two time steps). The key is that decision-

making at time m + 1 is independent of time m (given the state Xm+1). So at time m + 1,

the last step of decision-making for n = 2, the optimal decision and the maximum reward

can be found following the strategy we discussed for n = 1. For time m, however, it is

more interesting because we have to consider the immediate reward following the action at

time m as well as the next state and its expected aggregate reward moving forward. In

particular, the expected maximum aggregate reward in two steps, starting in state i, is given

by v⋆i (2,u) = maxk{r(k)i +
∑

j P
(k)
ij v⋆j (1,u)}. More generally, we have the following for n steps

(where v∗i (0,u) = ui) and a set Ki actions:

v⋆i (n,u) = max
k∈Ki

{r(k)i +
∑
j

P
(k)
ij v⋆j (n− 1,u)}.

This recursive equation is known as Bellman’s equation, and it was developed by Richard

Bellman in the 1960s. This equation plays a central role in a machine learning framework

called reinforcement learning. Using it, we may use dynamic programming techniques to

break down the decision-making process into smaller problems.

We finish this section by going back to Example 17. For n = 2 and u = 0, we obtain the
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following. We first compute the values for n = 1.

v⋆1(1,u) = max
k∈K1

{r(k)1 +
∑
j

P
(k)
1j ujj}

= r1 +
∑
j

P1juj (no decision to make)

= r1

= 0

v⋆2(1,u) = max
k
{r(1)2 +

∑
j

P
(1)
2j uj, r

(2)
2 +

∑
j

P
(2)
2j uj}

= max{r(1)2 , r
(2)
2 }

= max{1, 50}

= 50
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Then looking at n = 2.

v⋆1(2,u) = max
k∈K1

{r(k)1 +
∑
j

P
(k)
1j ujj}

= r1 +
∑
j

P1jv
⋆
j (1,u) (no decision to make)

= 0 + 0.99× v⋆1(0,u) + 0.01× v⋆2(0,u)

= 0 + 0× 0.99 + 0.01× 50 = 0.5

= 0.5

v⋆2(2,u) = max
k∈K1

{r(k)1 +
∑
j

P
(k)
1j ujj}

= max
k
{r(1)2 +

∑
j

P
(1)
2j v⋆j (1,u), r

(2)
2 +

∑
j

P
(2)
2j v⋆j (1,u)}

= max
k
{r(1)2 +

∑
j

P
(1)
2j v⋆j (1,u), r

(2)
2 +

∑
j

P
(2)
2j v⋆j (1,u)}

= max{1 + 0.01× v⋆1(1,u) + 0.99× v⋆2(1,u), 50 + 1× v⋆1(1,u)}

= max{1 + 0.01× 0 + 0.99× 50, 50 + 1× 0}

= max{1 + 0.99× 50, 50}

= 50.5

This indicates that in order to maximize the expected aggregate reward in two time steps,

the policy is as follows: in state 2, the first time, we choose Decision 1 and the second time,

we choose Decision 2. One can show that more generally, the optimal policy is to choose

Decision 1 except in the last step. In the last step, the optimal decision would be Decision

2.
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4. Arrival Processes

So far, we have modeled time in discrete steps. We now discuss the continuous nature or

time and occurrence of events through arrival processes. This topic corresponds to Chapter

5 of Introduction to Probability Models by Sheldon Ross.

4.1. Poisson Processes

Arrival processes model occurence of events: arrival of a communication packet, arrival of a

customer, occurrence of a crisis, arrival of visitors on a webpage, etc. An arrival process may

be described by the arrival times (the point in time when each arrival occurred, S1, S2, S3, ...),

the interarrival times (the time between events, T1, T2, T3, ...), or the number of arrivals up

to a point in time (N(t), t ≥ 0). In this section, we focus on Poisson arrival processes.

In order to introduce this topic, we first illustrate these quantities through the formulation

of this problem in discrete time. At each discrete time index i, an arrival occurs with

probability p. Therefore, the arrival process as a whole can be modeled as a sequence of

binary experiments and thus follows a binomial distribution with probability p. In other

words, N(t) ∼ Binom(t, p). Additionally, note that the interarrival time consists of the

number of time steps where we do not have an arrival; thus, it follows a geometric distribution

and Ti ∼ Geom(p). Since these interarrivals follow a geometric distribution, the memoryless

property, P(T ≥ s + t|T ≥ t) = P(T ≥ s) applies: in coin tosses, the number of sequential

“heads” does not affect the probability of seeing “tails”.

| | | | | | | | | | | | | | | |× × ×
t1 t2 t3

T1 T2 T3

i

Figure 21: A discrete-time arrival process; here, for example,

N(t1) = 1, N((t1 + t2)/2) = 1, N(t3) = 3

In continuous time, we do not have the notion of a time index i. Nonetheless, if we consider

the limit of the above Bernoulli process, we will have a Poisson process which is defined on
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continuous time domain. Formally, a Poisson process is an arrival process with the following

three properties. This forms our first definition of Poisson processes.

I. Stationary increments: the number of arrivals in an interval depends only on the length

of the interval – not when it takes place; that is:

P(N(t2)−N(t1) = k) = P(N(t2 − t1) = k)

P(N(s+ t)−N(t) = k) = P(N(s) = k)

II. Independent increments: the number of arrivals in disjoint time intervals is indepen-

dent; simply, the number of arrivals in one interval does not affect the number of

arrivals in another disjoint interval. Thus, for times τ1 < τ2 < t1 < t2 we have the

following.

P(N(τ2)−N(τ1) = j,N(t2)−N(t1) = k) = P(N(τ2)−N(τ1) = j)P(N(t2)−N(t1) = k)

III. Poisson pmf of the number of arrivals: the number of arrivals in an interval of length

t is Poisson with rate λt. I.e., N(t) ∼ Poisson(λt).

As an immediate result, for two times s, t with s < t, we have the following.

P(N(t) = j|N(s) = k) = P(N(t)−N(s) = j − k|N(s) = k) (Property I.)

= P(N(t)−N(s) = j − k) (Property II.)

= P(N(t− s) = j − k) (Property I.)

=
(λ(t− s))j−ke−λ(t−s)

(j − k)!
(Property III.)

4.2. Exponential Inter-Arrival Times

One of the properties of Poisson processes is that the inter-arrival times T1, T2, . . . are i.i.d.

following an Exponential distribution with mean 1
λ
. This can be seen as follows. Time until

the next arrival is at least t (i.e., T > t), iff there is no arrival in the interval of length t. So
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the corresponding probability is

Pr(T > t) = Pr(N(t) = 0) = e−λt

and consequently

Pr(T ≤ t) = 1− e−λt

which points to the cdf of an exponential random variable with mean 1
λ
.

Interestingly, an equivalent alternative definition for Poisson processes is based on this prop-

erty: An arrival process is Poisson with rate λ iff its inter-arrival times are i.i.d. distributed

according to Exponential with mean 1
λ
.

Recall that exponential distributions have the memoryless property, i.e.,

Pr(T > s+ t|T > s) = Pr(T > t).

So no matter how long we have waiting for an event, the remaining time until the occurence

of the event is still Exponential with the mean 1
λ
. Exponential RVs are the only continuous

RVs with the memoryless property. In discrete time RVs, Geometric RVs are the only RVs

satisfying the memoryless property.

Consider now the probability of an arrival in an infinitesimally small time h. This means

that time from t = 0 to t = S1 (i.e., T1) is less than h.

P(T < h) =

∫ h

0

fT (t)dt

=

∫ h

0

λe−λtdt

= λ

∫ h

0

e−λtdt

= 1− e−λh

= 1−
(
1− λh

1!
+

λ2h2

2!
+ ...

)
(Taylor Series)

= λh+ o(h)

The notation o(h) comes from asymptotic analysis notation and indicates a class of function

whose behavior as h→ 0 approaches zero quicker than a linear function (and thus is negligible

for small h).

ESE 3030 - Stochastic Systems Analysis and Simulation 66 of 86



4 Arrival Processes

The above results suggests that at each time, the probability of having an event within the

next infinitesimally small amount of time h is ≈ λ1h. For this reason, λ is referred to as

the rate of the arrival process. We next argue that the probability of having more than one

arrival in an infinitesimal time-interval is negligible. So, the probability of having no events

is ≈ 1− λh

Consider the event of having two arrivals within the small time interval of length h. This

implies that T1 ≤ h, T2 ≤ h. The probability of such events can be computed as follows

because T1, T2 are iid in a Poisson process:

Pr(T1 ≤ h& T2 ≤ h) = Pr(T1 ≤ h) Pr(T2 ≤ h) = λ2h2 = o(h).

A third definition of Poisson processes is based on this property. An arrival process is Poisson

with rate λ iff it satisfies Properties I and II (stationary and independent increments) and

further Pr(N(t) = 1) = λh+ o(h) and Pr(N(t) > 1) = λo(h).

Suppose that we have two independent Poisson processes with rates λ1 and λ, respectively

(e.g. arrival of passengers and arrival of buses). We may be interested in the event that one

occurs before the other. Let the time to the arrival of a passenger be T1 and the time to the

arrival of a bus be T2. The passenger arriving before the bus corresponds to the event that

T1 ≤ T2 and can be computed as follows:

P(T1 ≤ T2) =

∫ +∞

0

P(T1 ≤ t|T2 = t)fT2(t)dt

=

∫ +∞

0

FT1(t)fT2(t)dt

=

∫ +∞

0

(1− e−λ1t)λ2e
−λ2t(t)dt

= λ2

∫ +∞

0

e−λ2t − e−(λ2+λ1)tdt

= λ2

(
1

λ2

− 1

λ1 + λ2

)
=

λ1

λ1 + λ2
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The result above should be compatible with your intuition. The probability of seeing one

event rather than the other has a chance proportional to the rate of the arrival of the

events.

In the homework, you will establish that the minimum of two Exponential RVs (of rates λ

and µ) is an Exponential with rate (λ + µ). This comes in handy when we have multiple

Poisson arrival processes and we are interested in the combined Poisson process. The time

until the first event (of any kind) is then modelled by an Exponential RV and its rate is the

sum of the rate of the involved Poisson processes.

5. Continuous-Time Markov Chains

With discrete Markov chains, transitions (to a different or same state) took place at each

successive time index n. With continuous-time Markov chains, we use the notation X(t) =

i,X[t : s] = i to indicate that the we are at state i at time instant t ∈ R+ and that we were

in state i in the interval from t to s, with t, s ∈ R+, respectively. Note that in this context

we do not have a notion of a time index/step for transition to occur as it is the case with

discrete-time Markov chains. Instead, we remain at state i for some (random) time Ti ∈ R+

at which point a transition to a different state occurs. As the name implies, with continuous-

time Markov chains we require that the distribution of transition times is memoryless (e.g.

follows the Markov property). Since it cannot depend on the past, it cannot be affected by

the holding time (the amount of time spent at a given state i) and thus Ti must be a random

variable such that P(Ti > t) = P(X[0, t] = i|X(0) = i).

Observe that the the condition P(Ti > t) = P(X[0, t] = i|X(0) = i) corresponds exactly to

the Markov property as shown below.

P(Ti ≥ s+ t|Ti ≥ s) = P(X[0 : s+ t] = i | X[0 : s] = i)

= P(X[s : s+ t] = i | X[0 : s] = i)

= P(X[s : s+ t] = i | X(s) = i)

= P(X[0 : s+ t] = i | X(0) = i)
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From previous sections, we know that the only memoryless continuous distribution (i.e.

follows the Markov property) is the exponential distribution; as such, it must be the case

that with continuous-time Markov chains we have that the holding time Ti will always follow

an exponential distribution. Given this fact, we can define a continuous-time Markov chain

as a set of states i ∈ S with holding times Ti ∼ exp(νi) and once transitions occur, they take

place according to the transition probabilities of embedded discrete-time Markov chain for

each Pij, i ̸= j.

Given the above, we define some quantities. Let νi be the transition rate out of state i (i.e.

the holding time for state i is Ti ∼ exp(νi)) and qij = νiPij be the transition rate from state

i to state j. Note that the latter is simply the transition rate of state i weighted by the

probability of going from state i to state j and thus
∑

j qij =
∑

j νiPij = νi
∑

j Pij = νi.

The following results further clarify the underlying meaning of νi, qij. Note that Pii(0) = 1

and Pij(0) = 0,∀j ̸= i, that is, the probability of being at state i assuming we are at state i

after a time interval of length 0 is equal to 1 and the probability of being at state j assuming

we are at state i in a time interval of length 0 is equal to 0, respectively. Assuming we are

at state i, the probabilities of being at state i after an infinitesimally small time interval

h (i.e. Pii(h)) and the probabilities of being at state j, j ̸= i after an infinitesimally small

time interval h (i.e. Pij(h)). We also remind you that as discussed in Section 4.1, for small

interval h → 0, the probability of more than one event taking place is negligible (o(h)).

Therefore:

Pii(h) = P(Ti > h)

= 1−P(Ti ≤ h)

= 1− hνi + o(h)

Pij(h) = P(X(h) = j|X(0) = i)

= P(Ti ≤ h)Pij + o(h)

= νiPij + o(h)

= hqij + o(h)
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Then:

lim
h→0

Pii(h) = lim
h→0

1− hνi + o(h)

−νi = lim
h→0

Pii(h)− 1

h

−νi = lim
h→0

Pii(h)− Pii(0)

h− 0
(Pii(0) = 1)

−νi =
∂Pii(t)

∂t

∣∣∣∣
t=0

(limit definition of the derivative)

Likewise:

lim
h→0

Pij(h) = lim
h→0

hqij + o(h)

qij = lim
h→0

Pij(h)

h

qij = lim
h→0

Pij(h)− 0

h− 0

qij = lim
h→0

Pii(h)− Pij(0)

h− 0
(Pij(0) = 0)

qij =
∂Pij(t)

∂t

∣∣∣∣
t=0

(limit definition of the derivative)

This further re-enforces the notion of rates for νi and qij. Indeed, νi is the instantaneous

rate at which the probability of being at state i is decreasing at t = 0; similarly, qij is the

rate at which the probability of being at state j (starting at state i) is increasing at t = 0.

They are, therefore, the rates of transition.

5.1. Chapman-Kolmogorov Equations in Continuous-Time

In Section 3.4, the Chapman-Kolmogorov equation was introduced to calculate multiple-step

transition probabilities. When considering continuous-time Markov Chains, those equations

transfer almost directly; instead of considering time steps, however, we look at two time
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intervals, one with length s and another with length t.

Pij(s+ t) = P(X(t+ s) = j|X(0) = i)

=
∑
k∈S

P(X(t+ s) = j|X(0) = i,X(t) = k)P(X(t) = k|X(0) = i)

=
∑
k∈S

P(X(t+ s) = j|X(t) = k)P(X(t) = k|X(0) = i) (Markov property)

=
∑
k∈S

P(X(s) = j|X(0) = k)P(X(t) = k|X(0) = i) (Time invariance)

=
∑
k∈S

Pkj(s)Pik(t)

Consider now the following simple Markov chain.

Example 18 A Markov chain with states 0, 1 is such that the transition from state 0 to 1

occurs with rate q01 and the transition from state 1 to 0 occurs with rate q10. What are the

limit probabilities for this Markov chain?

0 1

q01

q10

Observe first that ν0 =
∑

j q0j = q01, ν1 =
∑

j q1j = q10. We apply the Chapman-Kolmogorov

equations with s = h, h→ 0.

P00(t+ h) =
∑
k∈S

Pk0(h)P0k(t)

= P00(h)P00(t) + P01(t)P10(h)

Note we have all two possibilities here: we either (1) stay in state 0 for a time h and then

continue to stay there for another time t or (2) transition from 0 to 1 in time t and the
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transition back in time h. Then:

P00(t+ h) = P00(h)P00(t) + P01(t)P10(h)

P00(t+ h) = (1− q01h)P00(t) + (1− P00(t))q10h

P00(t+ h) = P00(t)− q01hP00(t) + q10h− P00(t)q10h

P00(t+ h) = P00(t) + q10h− P00(t)(q01 + q10)h

P00(t+ h)

h
=

P00(t)

h
+ q10 − P00(t)(q01 + q10)

P00(t+ h)− P00(t)

h
= q10 − P00(t)(q01 + q10)

Applying the limit as h→ 0.

lim
h→0

P00(t+ h)− P00(t)

h
= lim

h→0
q10 − P00(t)(q01 + q10)

∂

∂t
P00(t) = q10 − P00(t)(q01 + q10)

P ′
00(t) = q10 − P00(t)(q01 + q10)

Note that this is a first-order ordinary differential equation. It can be shown that a solution

to this problem is of the form P00(t) = q10/(q10+q01)+ce−(q10+q01)t. Using the initial condition

that P00(0) = 1, the probability of being at state 0 starting at state 0 after an interval of

length 0 is equal to 1, we obtain that c = q01/(q10 + q01); therefore.

P00(t) =
q10

q10 + q01
+

q01
q10 + q01

e−(q10+q01)t

Applying a similar procedure to P11(t), we obtain the following equation after solving the

ordinary differential equation.

P11(t) =
q01

q10 + q01
+

q10
q10 + q01

e−(q10+q01)t

Using the fact that P01(t) = 1− P00(t) and P10(t) = 1− P11(t):

P01(t) =
q01

q10 + q01
− q10

q10 + q01
e−(q10+q01)t

P10(t) =
q10

q10 + q01
− q10

q10 + q01
e−(q10+q01)t
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With these closed-form equations, we can find the long-term probabilities simply by taking

the limit as t→∞; then.

lim
t→∞

P00(t) =
q10

q10 + q01

lim
t→∞

P01(t) =
q01

q10 + q01

lim
t→∞

P11(t) =
q01

q10 + q01

lim
t→∞

P10(t) =
q10

q10 + q01

This example offers insights into the framework for more complex continuous-time Markov

chains. More generally, using our previous results, we have that the following holds.

lim
h→0

Pij(t+ h) = lim
h→0

∑
k∈S

Pkj(h)Pik(t)

lim
h→0

Pij(t+ h) = lim
h→0

Pjj(h)Pij(t) +
∑

k∈S,k ̸=j

Pkj(h)Pik(t)

lim
h→0

Pij(t+ h) = lim
h→0

Pjj(h)Pij(t) +
∑

k∈S,k ̸=j

Pkj(h)Pik(t)

lim
h→0

Pij(t+ h) = lim
h→0

(1− νjh)Pij(t) +
∑

k∈S,k ̸=j

qkjhPik(t)

lim
h→0

Pij(t+ h) = lim
h→0

Pij(t)− νjhPij(t) +
∑

k∈S,k ̸=j

qkjhPik(t)

lim
h→0

Pij(t+ h)− Pij(t)

h
= lim

h→0
−νjPij(t) +

∑
k∈S,k ̸=j

qkjPik(t)

∂

∂t
Pij(t) = −νjPij(t) +

∑
k∈S,k ̸=j

qkjPik(t)

P ′
ij(t) =

∑
k∈S,k ̸=j

qkjPik(t)− νjPij(t)

The differential equation above is denominated in the Kolmogorov forward equation.

Note that, unlike the previous simple case, there is no simple solution to this differential

equation. Observe it corresponds to the sum of the probabilities of going into state j (in t

time go from i to k, i.e. Pik(t), and instantly go from k to j, i.e. qkj) minus the probability

of out of it (in time t going from i to j, i.e. Pik, and instantly out of j, i.e. νj.

Note that in that equation we set it up such that we go from i to k in time t and instantly

to state j. Alternatively, we can set the equations up such that we consider the case where
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we transition immediately from state i to k (i.e. qik) and in t time go from k to j (i.e.

Pkj(t)).

lim
h→0

Pij(t+ h) = lim
h→0

∑
k∈S

Pkj(t)Pik(h)

lim
h→0

Pij(t+ h) = lim
h→0

Pii(h)Pij(t) +
∑

k∈S,k ̸=i

Pkj(t)Pik(h)

lim
h→0

Pij(t+ h) = lim
h→0

(1− νih)Pij(t) +
∑

k∈S,k ̸=i

Pkj(t)qikh

lim
h→0

Pij(t+ h)− Pij(t)

h
= lim

h→0
−νiPij(t) +

∑
k∈S,k ̸=i

qikPkj(t)

∂

∂t
Pij(t) = −νiPij(t) +

∑
k∈S,k ̸=i

qikPkj(t)

P ′
ij(t) =

∑
k∈S,k ̸=i

qikPkj(t)− νiPij(t)

The result we obtain is what is known as the Kolmogorov backward equation. While

interpretation is slightly harder than the forward equations, we likewise have the sum of

the probabilities of transitioning immediately from i to k multiplied by the probability of

reaching k from j in the remaining time t minus the probability of out of i then transitioning

in the remaining time t into j.

5.1.1. The Matrix Exponential

As previously mentioned, while we can solve these equations for simple cases such as the

two-state Markov chain in Example 18, this is generally not the case. This is primarily

due to the fact that we have coupled differential equations (i.e. for each Pij(t) depends on

k functions Pkj(t)). An efficient way of solving coupled differential equations is using the

matrix exponential by making use of the fact that ∂/∂t eAt = AeAt.

We first define the meaning of the matrix exponential eAt. While taking the matrix power

of a constant may not immediately make sense, we can make use of the Taylor expansion of

the exponential to justify the notation. Namely, we have the following.

eAt =
+∞∑
k=0

(At)k

k!
= I+At+

A2t2

2!
+

A3t3

3!
+ ...
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Indeed, this definition provides a clear explanation of the fact that ∂/∂t eAt = AeAt.

∂

∂t
eAt =

∂

∂t
I+At+

A2t2

2!
+

A3t3

3!
+ ...

= A+A2t+
A3t2

2!
+ ...

= A(I+At+
A2t2

2!
+ ...)

= A
+∞∑
k=0

(At)k

k!

= AeAt

Example 19 Find the general solution to the system of equations below.

f ′(x) = f(x) + g(x)

g′(x) = 4f(x) + g(x)

We can write this in matrix form as follows.

∂

∂x

f(x)

g(x)

 =

1 1

4 1

f(x)

g(x)


∂

∂x

f(x)

g(x)

 =

−1 1

2 2

−1 0

0 3

−1/2 1/4

1/2 1/4

f(x)

g(x)


Such system admits a solution of the form eAx. We can write it as follows by leveraging the

spectral decomposition of A.

exp

1 1

4 1

x

 = exp

−1 1

2 2

−1 0

0 3

−1/2 1/4

1/2 1/4

x


=

−1 1

2 2

 exp

−1 0

0 3

x

−1/2 1/4

1/2 1/4


=

−1 1

2 2

e−x 0

0 e3x

−1/2 1/4

1/2 1/4


=

e−x/2 + e3x/2 e3x/4− e−x/4

e3x − e−x e−x/2 + e3x/2
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Then, eAtx with x being a vector of constants such that initial conditions are satisfied is a

solution to this system. Consider for example x = [1, 0], then.f(x)

g(x)

 =

e−x/2 + e3x/2 e3x/4− e−x/4

e3x − e−x e−x/2 + e3x/2

1

0


=

e−x/2 + e3x/2

e3x − e−x


Indeed.

∂

∂x

e−x/2 + e3x/2

e3x − e−x

 =

1 1

4 1

e−x/2 + e3x/2

e3x − e−x


−e−x/2 + 3e3x/2

3e3x + e−x

 =

e−x/2 + e3x/2 + e3x − e−x

2e−x + 2e3x + e3x − e−x


−e−x/2 + 3e3x/2

3e3x + e−x

 =

−e−x/2 + 3e3x/2

3e3x + e−x


Returning to the problem at hand, define first the transition rate matrixR and the continuous-

time transition matrix as follows.

R =


−ν1 q12 · · · q1n

q21 −ν2 · · · q2n
...

...
. . .

...

qn1 qn2 · · · −νn

 P(t) =


P11(t) P12(t) · · · P1n(t)

P21(t) P22(t) · · · P2n(t)
...

...
. . .

...

Pn1(t) Pn2(t) · · · Pnn(t)


Note then that the matrix products RP(t),P(t)R correspond, respectively, to the system

of differential equations that follows from the Kolmogorov backward and forward equations.

In other words, we have P′(t) = RP(t) and P′(t) = P(t)R. These are linear systems of

differential equations, and therefore we have that their solutions are given by P(t) = eRt.

This means that in order to find the probability of transitioning from state i to state j in an

interval of length t, we can find the (i, j) entry of the matrix eRt.

5.2. Application: Continuous-Time Queueing Theory

When discussing discrete-time Markov chains, we introduced queueing systems under the

assumption that at each time step the objects under study (packets, customers, etc.) are
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processed with some fixed probability. With continuous-time Markov chains, we can further

our model by introducing specific (exponential) processing times or equivalently arrivals

following a Poisson distribution. We develop these ideas through an example.

Example 20 A single-server queue is such that arrival and service times are distributed

following an exponential distribution with rates λ and µ, respectively. The quantities of

interest are the limit probabilities, the expected length of the queue, and the average wait

time.

We model this using a Markov chain where each state i, i ≥ 0, corresponds to the length

of the queue. First note that νi = λ + µ for all i ̸= 0. It should be clear that Pi,i−1 =

µ/(µ+ λ), Pi,i+1 = λ/(µ+ λ) and thus the following is true for all i ̸= 0.

qi,i−1 = νiPi,i−1 = (µ+ λ)
µ

µ+ λ
= µ

qi,i+1 = νiPi,i+1 = (µ+ λ)
λ

µ+ λ
= λ

Note that throughout this analysis we assume µ > λ; otherwise, the queue will grow indefi-

nitely. We then have the following balance equation.

Pi = Pi+1,iPi+1 + Pi−1,iPi−1

Pi =
µ

µ+ λ
Pi+1 +

λ

µ+ λ
Pi−1

(µ+ λ)Pi = µPi+1 + λPi−1

Note also that λP0 = µP1. Following the usual substitutions and the fact that
∑

i Pi = 1,

we obtain that Pi = (λ/µ)iP0 and P0 = 1− λ/µ.

At this point, we may calculate the other quantities of interest. We first calculate the
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expected length of the queue; this corresponds to the expected value of X(t), call it L.

E[X(t)] = E[L]

=
∞∑
i

iPi

=
∞∑
i

i((λ/µ)iP0)

=
∞∑
i

i((λ/µ)i(1− λ/µ)

= (1− λ/µ)
∞∑
i

i(λ/µ)i

= (1− λ/µ)
λ/µ

(1− λ/µ)2

=
λ

µ− λ

This is a sensible result: it’s the ratio between the service and service and arrival rates. Note

if λ ≪ µ (arrivals are slower than processing), the expected length is shorter; in the same

vain, if λ ≈ µ (remember that µ > λ), we have that the expected value approaches L.

We may also calculate the wait time W . Let L be the queue length; for a new customer

joining this queue, the total time in the system is T1 + T2 + ...+ TL+1 where Ti is the service

time of person i. Note that we have L + 1 terms since we need to include that time for

serving the new customer. Then:

E[W ] = E

[
E

[
L+1∑
i=1

Ti

∣∣∣∣∣L = ℓ

]]
= E [(L+ 1)E[Ti]]

= E[L+ 1]E[Ti]

= (E[L] + E[1])E[Ti]

=

(
λ

µ− λ
+ 1

)
1

µ

=
µ

µ− λ

1

µ

=
1

µ− λ
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As a side-note, one can write the equation above as E[W ] = 1/λE[L]. Changing notation,

we have that L = λW . This relationship is known as Little’s Law and interestingly it holds

for any queueing system independent of its structure or distribution.

A simulation of the system with µ = 5, λ = 2 is provided below. Note that this system is

somewhat more complicated to simulate and analyze than previous examples.

##############

# Simulation #

##############

Lambda, Mu = 2, 5

N = 5000

interarrivals = np.random.exponential(1/Lambda, size = N)

service_time = np.random.exponential(1/Mu, size = N)

arrivals = np.cumsum(interarrivals)

enter_service_time = np.zeros(N)

leave_service_time = np.zeros(N)

enter_service_time[0] = arrivals[0]

leave_service_time[0] = arrivals[0] + service_time[0]

for customer in range(1, N):

# Case 1: Previous customer finishes service before next arrival

if leave_service_time[customer - 1] < arrivals[customer]:

enter_service_time[customer] = arrivals[customer]

# Case 2: Previous customer finishes service after next arrival;

# in this case, the next only starts once the previous is done

else:

enter_service_time[customer] = leave_service_time[customer - 1]

# Each customer always leaves after entering service + service

leave_service_time[customer] = enter_service_time[customer] + \

service_time[customer]

############

# Analysis #

############
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L = np.zeros(N)

# Assumes maximum length is 10...

# Might have to change depending on Mu, Lambda

count = np.zeros(11)

probs = np.zeros((N, 11))

for customer in range(N):

# Define t as the arrival time of each person

t = arrivals[customer]

# If no wait, queue length is zero

if arrivals[customer] == enter_service_time[customer]:

L[customer] = 0

# If wait, find who was being serviced at the time and

# calculate difference

else:

for other_customer in range(customer):

if enter_service_time[other_customer] < t < \

leave_service_time[other_customer]:

L[customer] = customer - other_customer

break

count[int(L[customer])] = count[int(L[customer])] + 1

curr_prob = count / np.sum(count)

probs[customer] = curr_prob

print('Average wait time W:', str(np.mean(leave_service_time - arrivals)))

print('Average queue length L:', str(np.mean(L)))

The output of this script provides an average wait time of 0.343 time units and an average

queue length of 0.672. This matches nicely with the theoretical values of E[W ] = 1/3 = 0.333

and E[L] = 2/3 = 0.666. Plots for the simulation are provided below.
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Figure 22: (1) Probabilities for each value of L, (2) one realization of the process

Observe here that P0, P1, P2 stabilize around 0.60, 0.25, 0.10, respectively. This also matches

theory, with the limit probabilities P0 = 1 − λ/µ = 0.6, P1 = (λ/µ)P0 = 0.24 and P2 =

(λ/µ)2P0 = 0.096.

Additionally, note that this analysis generalizes (albeit with more complex algebra) to more

complex systems (e.g. N servers).
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6. Gaussian Processes

The Gaussian (or Normal) distribution is ubiquitous in different fields, from engineering to

economics to the natural sciences. This relates directly to the many analytical properties of

the Gaussian and its close connection with the Central Limit Theorem. In this section, we

introduce a class of stochastic processes governed by the Gaussian distribution and covers

the content from Chapter 10 of Sheldon Ross’s Introduction to Probability Models.

6.1. Properties of the Gaussian Distribution

The univariate Gaussian is a distribution fully described by its mean µ and variance σ2. Let

X be a random variable such that X ∼ N (µ, σ2); its p.d.f. is given as follows.

fX(x) =
1√
2πσ

exp

(
−1

2

(
x− µ

σ

)2
)

The plot of the p.d.f. gives rise to the well-known bell curve. Consider then k normal

random variablesX1, X2, ..., Xk with corresponding means µ1, µ2, ..., µk and covariances σ2
ij =

E[(Xi − µi)(Xj − µj)] for each i, j (note that σ2
ii is simply the variance of Xi). The joint

distribution of these random variables corresponds to the multivariate formulation of the

Gaussian distribution with p.d.f. given below.

fX(x) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
Here, X is the random vector with entries [X1, X2, ..., Xk]

T ,x ∈ Rk, and covariance matrix

Σ such that [Σ]ij = σ2
ij. Note that if the random variables are independent, Σ is a diagonal

matrix and its determinant is equal to the product of the individual variances. It is worth

emphasizing again the fact that the probability distribution of this sequence of random

variables is fully described by the mean vector and the covariance matrix.

Important properties of Gaussian random variables (proof omitted) include the follow-

ing.

I. Let X1 ∼ N (µ1, σ
2
1), X2 ∼ N (µ2, σ

2
2). Then aX1 + bX2 ∼ N (aµ1 + bµ2, a

2σ2
1 + b2σ2

2)

for a, b ∈ R.
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II. If X ∼ N (µ, σ2), the random variable Y = (X −µ)/σ follows the a standard Gaussian

distribution, i.e. Y ∼ N (0, 1).

III. Under somewhat mild conditions, given an i.i.d. set of observations {Zi}Ni=1, the sam-

ple mean µ̂ = 1/n
∑n

i=1 Zi approaches a Gaussian distribution with mean E[Zi] and

variance Var[Zi]/n.

6.2. Gaussian Processes: General Aspects

While we have considered so far discrete sequences of Gaussian random variables in the form

of vectors X, we can generalize these to infinite dimensions. This gives rise to Gaussian

processes; here, we use the notation X(t) to identify the Gaussian variable at time t.

As discussed previously, the distribution of a finite sequence of Gaussian random variables

is described by their mean and covariance matrix. This also holds for the case of Gaussian

processes, albeit with a slight change of notation to account for its continuous nature. We

define the mean value function µ(t) = E[X(t)] as the expectation of the random process at

time t and the autocorrelation function R(ti, tj) = E[X(ti)X(tj)]; note that from the former

we can obtain the autocovariance through the formula C(ti, tj) = R(ti, tj) − µ(ti)µ(tj) and

thus the whole process is explained by the mean and autocorrelation functions.

Note that given the distribution of X(t), we can make use of the tools from the probability

toolkit. If, for example, we know the value of X(t1), this will affect our estimate of X(t2)

for t2 > t1. Analytically, this can be computed using Bayes’s Theorem.

fX(t2)|X(t1)(t2|t1) =
fX(t1)|X(t2)(t1|t2)fX(t1)(t1)

fX(t2)(t2)

6.3. Application: Brownian Motion

A direct application of Gaussian processes is in the context of Brownian motion. The name

comes from Robert Brown, a botanist who observed that small particles in fluids behaved

according to the system described here. Due to the major contributions to this topic by

Norbert Wiener, this type of process is also known as Wiener process. A stochastic process

X(t), t ≥ 0 is said to be a Brownian process if the following conditions are respected.
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I. X(0) = 0

II. {X(t) : t ≥ 0} has stationary and independent increments

III. X(t) ∼ N (0, σ2t)

A simple example of Brownian motion is seen in the continuous-time version of the Gam-

bler’s Ruin problem (i.e. time is not indexed by integers and the wealth is a real number).

Specifically, we have the following framework: a particle’s position at time t is described

by a random variable X(t), and at each instant h → 0 with equal probabilities the particle

moves to the right or to the left by an amount σ
√
h. Define an index i = 0, 2, ..., N such

that the process ends at time T = Nh and any time step has a corresponding index t = ih.

Let Y ∼ Bernoulli(1/2), then for all time indices i > 0, we have the following:

X(t) = X(ih)

= X((i− 1)h) + (σ
√
h)Yi−1

= X(0) +
i−1∑
j=1

(σ
√
h)Yj (by induction)

We have that
∑i−1

j=1(σ
√
h)Yj ∼ N (0, σ2(ih)) using the Central Limit Theorem. It follows

then that X(t) ∼ N (0, σ2(ih)). Note that this is the case since we have that X(0) = 0.

Simply, this implies that as time progresses, the variance (i.e. uncertainty) of the particle’s

position increases with time. The simulation below provides empirical evidence of these

results.

sigma = 1

h = 0.001

t = np.arange(0, 5, h)

N = len(t)

T = N * h

n_sims = 1000

X = np.zeros((n_sims, N))

upper_interval = np.array([1.95*(np.sqrt(sigma**2 * i * h)) \

for i in range(N)])

lower_interval = np.array([- 1.95*(np.sqrt(sigma**2 * i * h)) \
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for i in range(N)])

for sim in range(n_sims):

for i in range(1, N):

Y_i = 1 if random.random() < 0.5 else -1

X[sim, i] = X[sim, i-1] + sigma * np.sqrt(h) * Y_i

plt.figure(figsize=(10, 5))

plt.plot(X[:25,:].T, linewidth=0.1)

plt.fill_between(np.arange(N), upper_interval, -lower_interval, \

alpha=0.4, label='95% CI')

plt.legend()

plt.xlabel('$t$')

plt.ylabel('$X(t)$')

plt.show()

Figure 23: N = 25 realization of Brownian process and 95% confidence interval with

µ = 0, σ2 = 1

Note that there is no requirement for equiprobabilities in the problem formulation. If we

adopt a probability p = 1/2(1 +
√
hµ/σ) for the object to move to the right and 1 − p to

the left, we obtain that X(t) ∼ N (µt, σ2(ih)). That is, the object has a tendency to drift

away as t increases; note however that the variance remains the same as before. Figure 24

provides the simulation results of this type of process.
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Figure 24: N = 25 realization of Brownian process and 95% confidence interval with

µ = 10, σ2 = 1

As a final note, a different stochastic process can be defined as X(t) = X(t1) exp
(
σ
√
hYi

)
withX(0) = c and Yi defined as a Bernoulli random variable. Note then that this corresponds

to a compounding model and is thus closely associated with financial models. This gives rise

to stochastic system analysis in the context of finance (e.g. Black-Scholes pricing model for

European options).
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